| 研究生: |
李和昇 Li, He-Sheng |
|---|---|
| 論文名稱: |
超高性能纖維混凝土之拉伸硬化行為與結構構件之撓曲行為 Tension stiffening behavior and structural flexural behavior of steel reinforced UHPFRC members |
| 指導教授: |
洪崇展
Hung, Chung-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 超高性能纖維混凝土 、拉伸硬化 、撓曲行為 、強度預測分析模型 |
| 外文關鍵詞: | Ultra High Performance Fiber Reinforced Concret(UHPFRC), Tension stiffening, Flexural behavior, Calculated ultimate moment model |
| 相關次數: | 點閱:170 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計並製作16支超高性能纖維混凝土矩形拉伸硬化試體與10支超高性能纖維混凝土簡支梁試體,研究參數包含:1)纖維量,與2)縱向鋼筋比,透過直接拉伸實驗,探討超高性能纖維混凝土拉伸硬化試體之行為;透過四點彎矩實驗,探討超高性能纖維混凝土撓曲行為,並建立超高性能纖維混凝土撓曲強度之預測公式。
研究結果顯示,縱向鋼筋比之對於超高性能纖維混凝土拉伸硬化行為沒有影響,加入鋼纖維能夠有效提升拉伸硬化能力。
本研究建立之撓曲強度預測分析模型,能夠有效的模擬拉伸硬化之行為對於簡支梁撓曲強度之影響,模型分析之撓曲強度與簡支梁實際之撓曲強度誤差範圍為-5%至+8%。
Sixteen Ultra High Performance Fiber Reinforced Concret(UHPFRC) tension tiffening specimens and ten UHPFRC simply supported beam specimens are designed and produced for this study. The design parameters include: 1) the amount of the fiber , and 2) longitudinal reinforcement ratio. Direct tensile tests are carried out to evaluate the behavior of UHPFRC tension stiffening specimens, and four point bending flexural tests are carried out to evaluate the flexural behavior of UHPFRC flexural members. An analytical method is described to predict the flexural strength of UHPFRC to bending,The test results show that longitudinal reinforcement ratio has no effect on tension stiffening behavior, and the fiber significantly enhances the tension stiffening ability. The results show that UHPFRC flexural members have superior flexural characteristics, and the calculated ultimate moment model was in good agreement with the experimental ultimate moment capacity, error range of -5% to + 8%.
[1] C.-C. Hung., W.-M. Yen., “Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars,” Procedia Engineering. 79, pp.506-512, (2014).
[2] C.-C. Hung., Y.-F. Su., “On Modeling Coupling Beams Incorporating Strain-hardening Cement-based Composites,” Computers and Concrete. 12(4), pp. 243-259, (2013).
[3] C.-C. Hung., Y.-F. Su., K.-H. Yu., “Modeling the Shear Hysteretic Response for High Performance Fiber Reinforced Cementitious Composites,” Construction and Building Materials. 41, pp.37-48, (2013).
[4] C.-C. Hung., S.-H. Li., “Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites,” Composites Part B: Engineering. 45, pp.1441-1447, (2013).
[5] 洪崇展、曾柏庭、游文吉、黃忠良,「使用高性能纖維混凝土於耦合結構牆以提升地震行為表現之有效性」,結構工程,26(4),第 3-16頁(2011)。
[6] CC Hung, YF Su. Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials 118, 194-203
[7] C.-C. Hung, C.-Y. Chueh. Cyclic Behavior of UHPFRC Flexural Members Reinforced with High-Strength Steel Rebar. Engineering Structures. 122, pp.108-120, 2016.
[8] C.-C. Hung, Y.-S. Chen. Innovative ECC Jacketing for Retrofitting Shear-Deficient RC Members. Construction & Building Materials. 111, pp. 408-418, 2016.
[9] C.-C. Hung, W.-M. Yen, K.-H. Yu. Vulnerability and Improvement of Reinforced ECC Flexural Members under Displacement Reversals: Experimental Investigation and Computational Analysis. Construction & Building Materials. 107, pp.287-298, March, 2016.
[10] C.-C. Hung, B.-T. Tseng, W.-G. You, J.-L. Huang. Effectiveness of Using High Performance Fiber Reinforced Concrete in Coupled Structural Walls for Improving Seismic Performance. Structural Engineering, Chinese Society of Structural Engineering. 26(4), pp. 3-16, 2011 (In Chinese)
[11] C.-C. Hung, S. El-Tawil. Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions. ASCE Journal of Structural Engineering ASCE. 137(12), pp.1499-1507, 2011
[12] C.-C. Hung, S. El-Tawil. Hybrid Rotating/Fixed-Crack Model for High Performance Fiber Reinforced Cementitious Composites.ACI Materials Journal, 107(6), p569-577, 2010
[13] C.-C. Hung., S. El-Tawil., “Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions,” ASCE Journal of Structural Engineering ASCE. 137(12), pp.1499-1507, (2011).
[14] A.M.T. Hassan., S.W. Jones., G.H. Mahumd., “Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC) ,” Construction and Building Materials, pp 1-9, (2012)..
[15] Benjamin A. Gralbeal., “Compressive Behavior of Ultra-High-Performance Fiber-Reinforced Concrete,” ACI Materials Journal, V.104, No.2,pp 146-152, March-April (2007).
[16] Kay Wille., Antoine E. Naaman., and Sherif El-Tawil., “Optimizing Ultra-High-Performance Fiber-Reinforced Concrete,” Concrete International, pp 35-41, September (2011).
[17] 張瑞宏、洪崇展、闕辰宇,「高強度鋼筋加勁之超高性能纖維混凝土懸臂梁於反覆載重作用下之撓曲行為」,國立中央大學土木工程學系碩士論文,(2015)。
[18] ACI Innovation Task Group 4 and Other Contributors “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications,” American Concrete Institute ITG-4.3R-17, pp. 10-12, (2008).
[19] Wasan I. Khalil , Tayfur Y. R., “FLEXURAL STRENGTH OF FIBROUS ULTRA HIGH PERFORMANCE REINFORCED CONCRETE BEAMS,” ARPN Journal of Engineering and Applied Sciences, MARCH (2013).
[20] ACI Committee 544.4.R-88., “Design Considerations for Steel Fiber Reinforced Concrete,” ACI manual of concrete practice, Part 1, material and general properties of concrete. pp. 1-18, (1994).
[21] Hognestad E, Hanson NW, McHenry D. Concrete stress distribution in ultimate strength design. ACI Journal, Proceedings 1955;52(12):455–79.
[22] Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio .Tension-stiffening model for steel fiber-reinforced concrete containing conventional reinforcement.ACI Structural Journal, July-August 2013, pp. 639-648