簡易檢索 / 詳目顯示

研究生: 李和昇
Li, He-Sheng
論文名稱: 超高性能纖維混凝土之拉伸硬化行為與結構構件之撓曲行為
Tension stiffening behavior and structural flexural behavior of steel reinforced UHPFRC members
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 超高性能纖維混凝土拉伸硬化撓曲行為強度預測分析模型
外文關鍵詞: Ultra High Performance Fiber Reinforced Concret(UHPFRC), Tension stiffening, Flexural behavior, Calculated ultimate moment model
相關次數: 點閱:170下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計並製作16支超高性能纖維混凝土矩形拉伸硬化試體與10支超高性能纖維混凝土簡支梁試體,研究參數包含:1)纖維量,與2)縱向鋼筋比,透過直接拉伸實驗,探討超高性能纖維混凝土拉伸硬化試體之行為;透過四點彎矩實驗,探討超高性能纖維混凝土撓曲行為,並建立超高性能纖維混凝土撓曲強度之預測公式。
    研究結果顯示,縱向鋼筋比之對於超高性能纖維混凝土拉伸硬化行為沒有影響,加入鋼纖維能夠有效提升拉伸硬化能力。
    本研究建立之撓曲強度預測分析模型,能夠有效的模擬拉伸硬化之行為對於簡支梁撓曲強度之影響,模型分析之撓曲強度與簡支梁實際之撓曲強度誤差範圍為-5%至+8%。

    Sixteen Ultra High Performance Fiber Reinforced Concret(UHPFRC) tension tiffening specimens and ten UHPFRC simply supported beam specimens are designed and produced for this study. The design parameters include: 1) the amount of the fiber , and 2) longitudinal reinforcement ratio. Direct tensile tests are carried out to evaluate the behavior of UHPFRC tension stiffening specimens, and four point bending flexural tests are carried out to evaluate the flexural behavior of UHPFRC flexural members. An analytical method is described to predict the flexural strength of UHPFRC to bending,The test results show that longitudinal reinforcement ratio has no effect on tension stiffening behavior, and the fiber significantly enhances the tension stiffening ability. The results show that UHPFRC flexural members have superior flexural characteristics, and the calculated ultimate moment model was in good agreement with the experimental ultimate moment capacity, error range of -5% to + 8%.

    摘要 I 誌謝 VI 目錄 VII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 1 第二章 文獻回顧 2 2.1 超高性能纖維混凝土 2 2.2 混凝土壓應力應變曲線 3 2.2-1 普通混凝土壓應力應變曲線 3 2.2-2 超高性能纖維混凝土壓應力應變曲線 4 2.2-3 混凝土抗壓極限應變 6 2.3 矩形應力塊折減係數 6 2.4 拉伸硬化行為 7 2.5 撓曲強度計算 10 第三章 試體製作與實驗架設 11 3.1實驗規劃 11 3.2試體設計 11 3.2-1拉伸硬化試體設計 11 3.2-2梁試體設計 12 3.3 拉伸試體與梁試體製作 14 3.3-1 拉伸試體與梁試體主筋與箍筋應變計之黏貼 14 3.3-2 拉伸試體與梁試體鋼筋與鋼模組立 17 3.3-3 拉伸試體與梁試體澆置 19 3.3-4拉伸試體與梁試體養護 21 3.4 試驗架設 21 3.4-1 拉伸硬化試驗架設 21 3.4-1-1 反覆拉伸試驗 21 3.4-1-2 梁試體試驗架設 23 3.4-2 量測系統 24 3.5 材料試驗 25 3.5-1 圓柱壓力試驗 25 3.5-2 狗骨頭拉力試驗 29 3.5-3 鋼筋拉力試驗 30 3.6 實驗數據處理方法 30 3.6-1 梁之真實位移 30 3.6-2 鋼筋應變值 31 第四章 拉伸硬化實驗與分析 32 4.1 材料試驗 32 4.1-1 鋼筋拉力 32 4.1-2 狗骨頭拉力試體 34 4.2 直接拉伸試驗 34 4.2-1 初始反應至0.3%應變結果 35 4.2-2 初始反應至試體破壞應變結果 36 4.3 反覆拉伸試驗 38 4.3-1 初始反應至0.3%應變結果分析 38 4.3-2 初始反應至試體破壞結果分析 40 4.3-3 拉伸強度 44 第五章 撓曲梁實驗和分析 47 5.1 梁之撓曲行為 47 5.1-1 B – 0.2R – 0F試體 47 5.1-2 B – 0.2R – 2F試體 49 5.1-3 B – 2.5R – 0F試體 51 5.1-4 B – 2.5R – 2F試體 53 5.1-5 B – 3.8R – 0F試體 55 5.1-6 B – 3.8R – 2F試體 57 5.1-7 B – 4.6R – 0F試體 59 5.1-8 B – 4.6R – 2F試體 61 5.1-9 B – 7.7R – 0F試體 63 5.1-10 B – 7.7R – 2F試體 65 5.2 實驗結果 67 5.2-1 載重位移圖 67 5.3-2 裂縫發展情形 71 5.3 材料模型 81 5.3-1混凝土壓應力應變理論曲線設計 81 5.3-2等值矩形應力塊設計 83 5.3-3混凝土拉應力應變理論曲線設計 85 5.3-3-1 拉伸硬化試驗結果之拉應力應變理論曲線 ………...85 5.3-3-2 拉伸硬化試驗結果之拉應力應變 87 5.3-3-3 拉伸硬化試驗結果之拉應力應變模型 87 5.4 撓曲強度之公式探討 90 5.4-1 UHPC之撓曲梁強度計算 90 5.4-2 UHPFRC之撓曲梁強度計算 92 第六章 結論與建議 97 參考文獻 98

    [1] C.-C. Hung., W.-M. Yen., “Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars,” Procedia Engineering. 79, pp.506-512, (2014).
    [2] C.-C. Hung., Y.-F. Su., “On Modeling Coupling Beams Incorporating Strain-hardening Cement-based Composites,” Computers and Concrete. 12(4), pp. 243-259, (2013).
    [3] C.-C. Hung., Y.-F. Su., K.-H. Yu., “Modeling the Shear Hysteretic Response for High Performance Fiber Reinforced Cementitious Composites,” Construction and Building Materials. 41, pp.37-48, (2013).
    [4] C.-C. Hung., S.-H. Li., “Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites,” Composites Part B: Engineering. 45, pp.1441-1447, (2013).
    [5] 洪崇展、曾柏庭、游文吉、黃忠良,「使用高性能纖維混凝土於耦合結構牆以提升地震行為表現之有效性」,結構工程,26(4),第 3-16頁(2011)。
    [6] CC Hung, YF Su. Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials 118, 194-203
    [7] C.-C. Hung, C.-Y. Chueh. Cyclic Behavior of UHPFRC Flexural Members Reinforced with High-Strength Steel Rebar. Engineering Structures. 122, pp.108-120, 2016.
    [8] C.-C. Hung, Y.-S. Chen. Innovative ECC Jacketing for Retrofitting Shear-Deficient RC Members. Construction & Building Materials. 111, pp. 408-418, 2016.
    [9] C.-C. Hung, W.-M. Yen, K.-H. Yu. Vulnerability and Improvement of Reinforced ECC Flexural Members under Displacement Reversals: Experimental Investigation and Computational Analysis. Construction & Building Materials. 107, pp.287-298, March, 2016.
    [10] C.-C. Hung, B.-T. Tseng, W.-G. You, J.-L. Huang. Effectiveness of Using High Performance Fiber Reinforced Concrete in Coupled Structural Walls for Improving Seismic Performance. Structural Engineering, Chinese Society of Structural Engineering. 26(4), pp. 3-16, 2011 (In Chinese)
    [11] C.-C. Hung, S. El-Tawil. Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions. ASCE Journal of Structural Engineering ASCE. 137(12), pp.1499-1507, 2011
    [12] C.-C. Hung, S. El-Tawil. Hybrid Rotating/Fixed-Crack Model for High Performance Fiber Reinforced Cementitious Composites.ACI Materials Journal, 107(6), p569-577, 2010
    [13] C.-C. Hung., S. El-Tawil., “Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions,” ASCE Journal of Structural Engineering ASCE. 137(12), pp.1499-1507, (2011).
    [14] A.M.T. Hassan., S.W. Jones., G.H. Mahumd., “Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC) ,” Construction and Building Materials, pp 1-9, (2012)..
    [15] Benjamin A. Gralbeal., “Compressive Behavior of Ultra-High-Performance Fiber-Reinforced Concrete,” ACI Materials Journal, V.104, No.2,pp 146-152, March-April (2007).
    [16] Kay Wille., Antoine E. Naaman., and Sherif El-Tawil., “Optimizing Ultra-High-Performance Fiber-Reinforced Concrete,” Concrete International, pp 35-41, September (2011).
    [17] 張瑞宏、洪崇展、闕辰宇,「高強度鋼筋加勁之超高性能纖維混凝土懸臂梁於反覆載重作用下之撓曲行為」,國立中央大學土木工程學系碩士論文,(2015)。
    [18] ACI Innovation Task Group 4 and Other Contributors “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications,” American Concrete Institute ITG-4.3R-17, pp. 10-12, (2008).
    [19] Wasan I. Khalil , Tayfur Y. R., “FLEXURAL STRENGTH OF FIBROUS ULTRA HIGH PERFORMANCE REINFORCED CONCRETE BEAMS,” ARPN Journal of Engineering and Applied Sciences, MARCH (2013).
    [20] ACI Committee 544.4.R-88., “Design Considerations for Steel Fiber Reinforced Concrete,” ACI manual of concrete practice, Part 1, material and general properties of concrete. pp. 1-18, (1994).
    [21] Hognestad E, Hanson NW, McHenry D. Concrete stress distribution in ultimate strength design. ACI Journal, Proceedings 1955;52(12):455–79.
    [22] Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio .Tension-stiffening model for steel fiber-reinforced concrete containing conventional reinforcement.ACI Structural Journal, July-August 2013, pp. 639-648

    下載圖示 校內:2020-06-27公開
    校外:2022-06-27公開
    QR CODE