| 研究生: |
陳舒瀚 Chen, Shu-Han |
|---|---|
| 論文名稱: |
以射頻濺鍍製備氟化鎂薄膜之光學性質研究 Investigation of Optical Properties of Magnesium Fluoride Thin Films Produced by RF Sputtering |
| 指導教授: |
李世欽
Lee, Shih-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 氟化鎂 、射頻濺鍍 、光學鍍膜 、熱處理 、表面能 |
| 外文關鍵詞: | R.F. sputtering, Magnesium fluoride, optical coating, surface energy, heat treatment |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氟化鎂薄膜具有很多優異的性質,如:在遠紫外光至紅外光區間有高穿透率、低折射係數(1.38-1.40)、機械耐久性與化學穩定性佳,可被應用在抗反射層、金屬保護層、彩色濾光片等光學元件上。另外氟化鎂薄膜亦可應用於光電、磁性、半導體與生醫材料方面,是一種應用極為廣泛的材料。然而傳統上使用熱蒸鍍方法製備氟化鎂薄膜,還是存在結構不緻密、堆積密度低與光學損失高等缺點。
本研究利用射頻磁控濺鍍沈積法(R.F.Sputtering)於純氬氣中來成長氟化鎂薄膜,基材使用矽晶片與玻璃基板,並透過製程上射頻功率、基板溫度與熱處理等條件變化,來研究氟化鎂薄膜的性質。
研究結果顯示,氟化鎂薄膜為含有微小晶粒的微晶結構,而鍍膜中含有些微的氧化鎂產生。隨著射頻功率增加時,鍍膜的沈積速率、光學穿透率及光學能隙值都呈現上升的趨勢,而表面粗糙度與表面能則有先上升後下降的趨勢。當基板溫度增加時,其沈積速率、光學穿透率與光學能隙值會下降,而表面團聚物(clusters)的尺寸與表面粗糙度有先上升後下降的趨勢,表面能則呈現相反的趨勢。熱處理會造成鍍膜的表面粗糙度增加、降低光學穿透率與表面能。
MgF2 thin films have many superior properties such as their high transparency, low refractive index, high chemical stability and mechanical durability. These properties make the films suitable for a large number of applications in optics, semiconductors and biologics. For example, anti-reflection coatings, protective coatings, nanocrystalline semiconductors, organic electroluminescent molecules and solar cell. Conventionally, films are grown by thermal evaporation of fluoride coating materials. These films have some mistake for sparse structure, low packing density, and high scattering loss.
In this study, MgF2 thin films were deposited in argon gas by radio frequency magnetron sputtering deposition. The substrate selected silicon wafer, glass. The properties of the films were investigated relations with changes of radio frequency power, substrate temperature and thermal treatment.
The results reveal that MgF2 thin films were amorphous-like structure with some nanocrystalline. The deposition rate, transparency, optical band gap, roughness and surface energy of thin films depend its process parameters such as power, substrate temperature and thermal treatment. When substrate temperature increasing, the MgO structures were formed in the MgF2 thin films by R.F. sputtering. With the R.F. power increasing, the deposition rate, transparency and optical band gap are increasing. The deposition rate, transparency and optical band gap are decreasing by raising substrate temperature. With substrate temperature increasing, the roughness of MgF2 thin films is increasing and the largest value appears at 200℃, neither does the surface energy of thin films. After thermal treatment, the roughness of MgF2 thin films is increasing, but the optical transparency and surface energy are decreasing.
參考文獻
[1] H. Ganesha Shanbhogue, S.N. Prasad, C.L. Nagendra and G.K.M. Thutupalli, "Optical properties and surface morphology of near infrared multiplayer antireflection coatings", Thin Solid Films, 320(1998), 290-297.
[2] G. Zhang, J. Zhao and M. A. Green, "Effect of substrate heating on the adhesion and humidity resistance of evaporated MgF2/ZnS antireflection coatings and on the performance of high-efficiency silicon solar cells", Solar Energy Materials and Solar Cells, 51(1998), 393-400.
[3] Juan I. Larruquert and Ritva A.M. Keski-Kuha, "Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al" Optical Communications, 215(2003), 93-99.
[4] T. Furubayashi, J. Magn. Magn. Mater., 140-144(1995) , 393.
[5] R. Thielsch, H. Bottcher, Chem. Phys. Lett., 189(1992), 226.
[6] S. Tokito, Y. Taga, Appl. Phys. Lett., 66(1995), 673.
[7] H. Kozuka, Sol-Gel Optics IV, SPIE 3136, 304(1997).
[8] Zs. Czigany, M. Adamik and N. Kaiser, "248 nm laser interaction studies LaF3/MgF2 optical coatings by cross-sectional transmission electron microscopy", Thin Solid Films, 312, (1998), 176-181.
[9] 李正中,"薄膜光學與鍍膜技術",藝軒圖書出版社,第一版,(1999).
[10] 楊錦章,"基礎濺鍍電漿",電子發展月刊,68期,(72)13-40.
[11] K. Kawamata , T. Shouzu and N. Mitamura, "K-M-S (keep-molecules sputtering) deposition of optical MgF2 thin film", Vacuum, 51(1998),559-564.
[12] Yong-Hong Ye, Ning Gu, Hai-Qian Zhang, Ping-Ping Chen and Xi-Lin Tan, "Influence of annealing on the surface topography of MgF2:an atomic force microscopic study", Thin Solid Films, 346(1999), 230-233.
[13] Xueke Xu, Zhaosheng Tang, Jianda Shao and Zhengxiu Fan, "The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films", Applied Surface Science, 245(2005),11-15
[14] D. Jacob, F. Peiro, E. Quensnel and D. Ristau, "Microstructure and composition of MgF2 optical coatings grown on Si substrate by PVD and IBS processes", Tin Solid Films, 360(2000), 133-138.
[15] George Atanassov, James Turlo, Ji Kai Fu and Yi Sheng Dai, "Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition", Thin Solid Films, 342(1999), 83-92.
[16] L. Dumas, E. Quesnel, J.-Y. Robic and Y.Pauleau, "Charaterization of magnesium fluoride thin films produced by argon ion beam-assisted deposition", Thin Solid Films, 382(2001), 61-68.
[17] Shinobu Fujihara, Hiroki Naito, Munehiro Tada and Toshio Kimura, "Sol-gel preparation and optical properties of MgF2 thin films containing metal and semiconductor nanoparticles" Scripta mater., 44(2001), 2031-2034.
[18] Shinobu Fujihara, Munehiro Tada and Toshio Kimura, "Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method" Thin Solid Films, 304(1997), 252-255.
[19] S. M Rossnagel et al., "Handbook of plasma processing technology", Noyes Publications Park Ridge, New Jersey, U.S.A, (1982).
[20] Brain Campman, "Plasma", Glow Discharge Process, (John Wiley & Sons, NewYork, U. S. A, (1980), Chap.3.
[21] 林光隆,國立成功大學 材料科學及工程學系,"材料表面工程講義",chap.7,(2001).
[22] L. John Vossen and Werner Kerm, "Thin Film Process", Academic Process, (1999), 134.
[23] R. F. Bunshah, "Deposition Technologies for Films and Coatings", Noyes Publications, Park Ridge, New Jersey, U. S. A., (1982).
[24] J. Venables, "Nucleation and Growth of Thin films", Rep. Prog. Phys., 47 (1984) 399.
[25] John A. Thornton, "Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings", J. Vac. Sci. Technol., 11(4)(1974), 666~670.
[26] 艾啟峰,"電漿工程科技在表面處理工業應用之發展(上) ",科儀新知,(1998).
[27] L. Gupta, A. Mansingh and P.K.Srivastava, "Band Gap Narrowing and the Band Structure of Tin-Doped Indium Oxide Films", Thin Solid Films, 176(1989), 33~44.
[28] 李玉華,"透明導電膜及其應用",科儀新知,第十二卷第一期(1990),94~102.
[29] E. Burstein, "Anomalous optical absorption limit in InSb", Phys. Rev. 93(1954), 455.
[30] H.L Hartangel, A.L. Dawar, A.K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics, Philiadelphia, (1995), 219-230.
[31] M. Ohing, "The Materials Science of Thin Films", printed in the United States of America, (1991), 11~112.
[32] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. muilenberg(Editor), "HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY", Eden Prairie, Minn., Physical Electronics, 1995.
[33] D. Briggs and M.P. Seah, "Practical Surface Analysis", Chichester, Wiley, c1990-c1992, New York.
[34] John F. Moulder, Jill Chastain, Roger C. King "Handbook of x-ray photoelectron spectroscopy : a reerence book of standard spectra for identification and interpretation of XPS data", Eden Prairie, Minn., Physical Electronics, c1995.
[35] 陳力俊,"材料電子顯微鏡學",國科會精儀中心發行,修訂再版(1994),75~77.
[36] A. Amaral, P. Brogueira, C. Nunes de Carvalho and G. Lavared, "Early stage growth structure of indium tin oxide thin films deposited by reactive thermal evaporation", Surface and Coatings Technology, 125 (2000), 151-156.
[37] Jianguo Lu, Zhizhen Ye, Jingyun Huang, Lei Wang and Binghui Zhao, "Synthesis and properties of ZnO films with (110) orientation by SS-CVD", Applied Surface Science, 207(2003), 295-299.
[38] Carl. V. Thompson, Roland Carel, "Texture development in poly crystalline thin films", Material Science and Engineering, B32(1995), 211-219.
[39] T. Young, Phil. Trans. R. Soc. (London), 95(1805), 65-87.
[40] F. M. Fowkes, J. Phys. Chem., 66(1962), 382.
[41] D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci, 13 (1969), 1741-1747.
[42] Q. Zhao, Y. Liu and E. W. Abel, "Effect of temperature on the surface free energy of amorphous carbon films", Journal of Colloid and Interface Science, 280(2004), 174-183.
[43] D.E. Packham, "Surface energy, surface topography and adhesion", International Journal of Adhesives, 23(2003), 437-448.