簡易檢索 / 詳目顯示

研究生: 陳舒瀚
Chen, Shu-Han
論文名稱: 以射頻濺鍍製備氟化鎂薄膜之光學性質研究
Investigation of Optical Properties of Magnesium Fluoride Thin Films Produced by RF Sputtering
指導教授: 李世欽
Lee, Shih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 107
中文關鍵詞: 氟化鎂射頻濺鍍光學鍍膜熱處理表面能
外文關鍵詞: R.F. sputtering, Magnesium fluoride, optical coating, surface energy, heat treatment
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氟化鎂薄膜具有很多優異的性質,如:在遠紫外光至紅外光區間有高穿透率、低折射係數(1.38-1.40)、機械耐久性與化學穩定性佳,可被應用在抗反射層、金屬保護層、彩色濾光片等光學元件上。另外氟化鎂薄膜亦可應用於光電、磁性、半導體與生醫材料方面,是一種應用極為廣泛的材料。然而傳統上使用熱蒸鍍方法製備氟化鎂薄膜,還是存在結構不緻密、堆積密度低與光學損失高等缺點。
    本研究利用射頻磁控濺鍍沈積法(R.F.Sputtering)於純氬氣中來成長氟化鎂薄膜,基材使用矽晶片與玻璃基板,並透過製程上射頻功率、基板溫度與熱處理等條件變化,來研究氟化鎂薄膜的性質。
    研究結果顯示,氟化鎂薄膜為含有微小晶粒的微晶結構,而鍍膜中含有些微的氧化鎂產生。隨著射頻功率增加時,鍍膜的沈積速率、光學穿透率及光學能隙值都呈現上升的趨勢,而表面粗糙度與表面能則有先上升後下降的趨勢。當基板溫度增加時,其沈積速率、光學穿透率與光學能隙值會下降,而表面團聚物(clusters)的尺寸與表面粗糙度有先上升後下降的趨勢,表面能則呈現相反的趨勢。熱處理會造成鍍膜的表面粗糙度增加、降低光學穿透率與表面能。

    MgF2 thin films have many superior properties such as their high transparency, low refractive index, high chemical stability and mechanical durability. These properties make the films suitable for a large number of applications in optics, semiconductors and biologics. For example, anti-reflection coatings, protective coatings, nanocrystalline semiconductors, organic electroluminescent molecules and solar cell. Conventionally, films are grown by thermal evaporation of fluoride coating materials. These films have some mistake for sparse structure, low packing density, and high scattering loss.
    In this study, MgF2 thin films were deposited in argon gas by radio frequency magnetron sputtering deposition. The substrate selected silicon wafer, glass. The properties of the films were investigated relations with changes of radio frequency power, substrate temperature and thermal treatment.
    The results reveal that MgF2 thin films were amorphous-like structure with some nanocrystalline. The deposition rate, transparency, optical band gap, roughness and surface energy of thin films depend its process parameters such as power, substrate temperature and thermal treatment. When substrate temperature increasing, the MgO structures were formed in the MgF2 thin films by R.F. sputtering. With the R.F. power increasing, the deposition rate, transparency and optical band gap are increasing. The deposition rate, transparency and optical band gap are decreasing by raising substrate temperature. With substrate temperature increasing, the roughness of MgF2 thin films is increasing and the largest value appears at 200℃, neither does the surface energy of thin films. After thermal treatment, the roughness of MgF2 thin films is increasing, but the optical transparency and surface energy are decreasing.

    總目錄 中文摘要.........................................I 英文摘要........................................II 總目錄..........................................IV 圖目錄.........................................VII 表目錄.........................................XII 第一章 緒論......................................1 1-1 前言.........................................1 1-2 研究動機與目的...............................3 第二章 文獻回顧及理論基礎........................4 2-1 氟化鎂(MgF2)之介紹.........................4 2-2 製備氟化鎂薄膜之方法.........................6 2-3 濺鍍原理.....................................9 2-3-1 電漿原理..................................12 2-3-2 射頻放電..................................14 2-3-3 磁控濺鍍法................................15 2-4 薄膜成長理論................................17 2-5 薄膜之光學性質..............................21 第三章 實驗方法與流程...........................26 3-1 實驗流程....................................26 3-2 濺鍍系統裝置................................27 3-3 實驗材料....................................30 3-4 鍍膜程序及參數設定..........................31 3-5 退火處理....................................32 3-6 薄膜性質量測................................33 3-6-1 膜厚與成長速率之量測......................33 3-6-2 晶體結構分析..............................33 3-6-3 顯微結構分析..............................34 3-6-4 成份及化學鍵結分析........................34 3-6-5 表面型態及粗糙度分析......................35 3-6-6 光學量測..................................35 3-6-7 接觸角量測................................36 第四章結果與討論..............................38 4-1 氟化鎂薄膜結構與成分之研究..................38 4-1-1 鍍膜之沈積速率分析........................38 4-1-2 鍍膜之元素成分與鍵結分析..................42 4-1-3 鍍膜之微結構分析..........................46 4-1-4 鍍膜之晶體結構分析........................48 4-1-5 鍍膜之表面型態觀察........................52 4-2 氟化鎂薄膜光學性質與表面能分析..............61 4-2-1 鍍膜之光學性質分析........................61 4-2-2 鍍膜之表面能分析..........................70 4-3 熱處理製程之影響............................81 4-3-1 微結構與成分分析..........................81 4-3-2 表面型態分析..............................86 4-3-3 光學性質分析..............................91 4-3-4 表面能分析................................95 第五章 結論....................................100 參考文獻.......................................102 誌謝...........................................107 圖目錄 Fig. 2-1 The crystal structure of magnesium fluoride (MgF2)..................................5 Fig. 2-2 The interaction of Ar ion gas on the target surface..................................11 Fig. 2-3 The mechanism of radio frequency magnetic sputtering.............................16 Fig. 2-4 The model of the magnetic sputtering...16 Fig. 2-5 The growth mechanism of the thin film..18 Fig. 2-6 The structure models of deposited layers, (a) Movchan and Demchisin’s model;(b) Thornton’s SZM model...........................20 Fig. 2-7 The pattern is the Burstein Moss shift effect..........................................24 Fig. 3-1 Flow chart of the experimental procedure.......................................26 Fig. 3-2 (a) Schematic diagram of the R.F. sputtering system. (b)The relation of target with substrate position..............................29 Fig. 3-3 The process of annealing treatment.....32 Fig. 3-4 Schematic drawing showing the contact angle between liquid and thin films.............37 Fig. 4-1 Deposition rate of MgF2 thin films at various R.F. power..............................41 Fig. 4-2 Deposition rate of MgF2 thin films at different substrate temperature.................41 Fig. 4-3 XPS spectrum of MgF2 films for 125W at different temperature (a) RT (b) 300℃..........44 Fig. 4-4 XPS analysis of MgF2 thin films (a) Mg2p3/2 (b) F1s (c) O1s.........................45 Fig. 4-5 TEM morphology of MgF2 thin films (a) bright filed (b)dark field (c)selected diffraction pattern.............................47 Fig. 4-6 XRD diffraction pattern of MgF2 thin films (constant power : 150W) at various substrate temperature, (a) RT (b) 100℃(c) 200℃(d) 300℃.......................................50 Fig. 4-7 XRD diffraction pattern of MgF2 thin films (RT) at different power, (a) 100W (b) 125W (c) 150W........................................51 Fig. 4-8 SEM morphology of MgF2 thin films (power:100W) by various substrate temperature, (a)RT (b)100℃ (c)200℃ (d)300℃...................53 Fig. 4-9 SEM morphology of MgF2 thin films at RT by various power, (a)100W (b)125W (c)150W.......54 Fig. 4-10 AFM of as-deposited films by different substrate temperature at constant power: 100W...57 Fig. 4-11 The relation of roughness and substrate temperature on MgF2 thin films..................58 Fig. 4-12 AFM micrographs of MgF2 thin films at various power: (a)100W (b)125W (c)150W (Substrate temperature is 300℃)...........................59 Fig. 4-13 The surface roughness of MgF2 thin films prepared at different power...............60 Fig. 4-14 The optical transmittance of as-deposited films in various substrate temperatures, constant power: (a) 100W (b) 150W.65 Fig. 4-15 The extinction coefficient of MgF2 thin films at different substrate temperatures, constant power: (a) 100W (b) 150W...............66 Fig. 4-16 The optical transmittance of MgF2 thin films changes for various power at constant substrate temperature...........................67 Fig. 4-17 The extinction coefficient of MgF2 thin films for different power at constant substrate temperature.....................................67 Fig. 4-18 Dependence of the absorption coefficient on the photo energy for MgF2 thin films deposited at various substrate temperature.....................................68 Fig. 4-19 Dependence of the absorption coefficient on the photo energy for MgF2 thin films deposited at various R.F. power...........68 Fig. 4-20 Variation of photo energy gap of MgF2 thin films deposited at different power.........69 Fig. 4-21 The contact angle of MgF2 thin films deposited at different substrate temperature for constant power:100W.............................74 Fig. 4-22 The morphology between pure water and MgF2 thin films deposited at various substrate temperature at 100W.............................75 Fig. 4-23 The morphology between ethylene glycol and MgF2 thin films deposited at various substrate temperature at 100W...................76 Fig. 4-24 The morphology between pure water and MgF2 thin films deposited at various R.F. power on 100℃. ......................................77 Fig. 4-25 The morphology between ethylene glycol and MgF2 thin films deposited at various R.F. power on 100℃..................................78 Fig. 4-26 Variation of contact angle of MgF2 thin films deposited for different R.F. power on 100℃...........................................79 Fig. 4-27 Surface energy of MgF2 thin films prepared at various substrate temperature.......79 Fig. 4-28 XRD of MgF2 thin films deposited at 125W, 200℃ after different annealing temperature : (a)as-deposited (b) 200℃(c) 300℃...........................................82 Fig. 4-29 XPS spectrum of MgF2 thin films; (a)as-deposited (b)after annealing 300℃..............84 Fig. 4-30 XPS analysis of MgF2 thin films after annealing 300℃; (a)Mg2p2/3 (b) F1s (c)O1s......85 Fig. 4-31 SEM morphology of MgF2 thin films prepared at 125W, 200℃after different annealing temperature; (a)as-deposited (b) 200℃(c) 300℃.87 Fig. 4-32 AFM morphology of MgF2 thin films prepared at 125W, 200℃after different annealing temperature; (a)as-deposited (b) 200℃(c) 300℃.89 Fig. 4-33 Surface roughness of MgF2 thin films after different annealing temperature...........90 Fig. 4-34 The optical transmittance of MgF2 thin films (100W, 200℃) in the region (300~800 nm) after different heat treatment..................93 Fig. 4-35 The extinction coefficient of MgF2 thin films (100W, 200℃) in the region (300~800 nm) after different heat treatment..................93 Fig. 4-36 Dependence of the absorption coefficient on the photo energy for MgF2 films deposited at 100W, 200℃ and annealed at different temperature...........................94 Fig. 4-37 The contact angle of MgF2 films prepared at 150W and annealed at various temperature for pure water......................97 Fig. 4-38 The contact angle of MgF2 films prepared at 125W, RT and annealed at various temperature.....................................97 Fig. 4-39 The contact morphology of MgF2 films deposited at 125W, RT and annealed at different temperature. (a-c) for pure water; (d-f) for ethylene glycol.................................98 Fig. 4-40 Surface energy of MgF2 films prepared at RT and annealed at various temperature.......99 Fig. 4-41 Surface energy of MgF2 films prepared at 125W and annealed at various temperature.....99 表目錄 Table 2-1 The physical properties of magnesium fluoride.........................................5 Table 3-1 The parameters of experiments.........31 Table 4-1 The energy gap of MgF2 thin films on various parameters..............................69 Table 4-2 The data of contact angle, surface energy and roughness of MgF2 thin films.........80

    參考文獻
    [1] H. Ganesha Shanbhogue, S.N. Prasad, C.L. Nagendra and G.K.M. Thutupalli, "Optical properties and surface morphology of near infrared multiplayer antireflection coatings", Thin Solid Films, 320(1998), 290-297.
    [2] G. Zhang, J. Zhao and M. A. Green, "Effect of substrate heating on the adhesion and humidity resistance of evaporated MgF2/ZnS antireflection coatings and on the performance of high-efficiency silicon solar cells", Solar Energy Materials and Solar Cells, 51(1998), 393-400.
    [3] Juan I. Larruquert and Ritva A.M. Keski-Kuha, "Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al" Optical Communications, 215(2003), 93-99.
    [4] T. Furubayashi, J. Magn. Magn. Mater., 140-144(1995) , 393.
    [5] R. Thielsch, H. Bottcher, Chem. Phys. Lett., 189(1992), 226.
    [6] S. Tokito, Y. Taga, Appl. Phys. Lett., 66(1995), 673.
    [7] H. Kozuka, Sol-Gel Optics IV, SPIE 3136, 304(1997).
    [8] Zs. Czigany, M. Adamik and N. Kaiser, "248 nm laser interaction studies LaF3/MgF2 optical coatings by cross-sectional transmission electron microscopy", Thin Solid Films, 312, (1998), 176-181.
    [9] 李正中,"薄膜光學與鍍膜技術",藝軒圖書出版社,第一版,(1999).
    [10] 楊錦章,"基礎濺鍍電漿",電子發展月刊,68期,(72)13-40.
    [11] K. Kawamata , T. Shouzu and N. Mitamura, "K-M-S (keep-molecules sputtering) deposition of optical MgF2 thin film", Vacuum, 51(1998),559-564.
    [12] Yong-Hong Ye, Ning Gu, Hai-Qian Zhang, Ping-Ping Chen and Xi-Lin Tan, "Influence of annealing on the surface topography of MgF2:an atomic force microscopic study", Thin Solid Films, 346(1999), 230-233.
    [13] Xueke Xu, Zhaosheng Tang, Jianda Shao and Zhengxiu Fan, "The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films", Applied Surface Science, 245(2005),11-15
    [14] D. Jacob, F. Peiro, E. Quensnel and D. Ristau, "Microstructure and composition of MgF2 optical coatings grown on Si substrate by PVD and IBS processes", Tin Solid Films, 360(2000), 133-138.
    [15] George Atanassov, James Turlo, Ji Kai Fu and Yi Sheng Dai, "Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition", Thin Solid Films, 342(1999), 83-92.
    [16] L. Dumas, E. Quesnel, J.-Y. Robic and Y.Pauleau, "Charaterization of magnesium fluoride thin films produced by argon ion beam-assisted deposition", Thin Solid Films, 382(2001), 61-68.
    [17] Shinobu Fujihara, Hiroki Naito, Munehiro Tada and Toshio Kimura, "Sol-gel preparation and optical properties of MgF2 thin films containing metal and semiconductor nanoparticles" Scripta mater., 44(2001), 2031-2034.
    [18] Shinobu Fujihara, Munehiro Tada and Toshio Kimura, "Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method" Thin Solid Films, 304(1997), 252-255.
    [19] S. M Rossnagel et al., "Handbook of plasma processing technology", Noyes Publications Park Ridge, New Jersey, U.S.A, (1982).
    [20] Brain Campman, "Plasma", Glow Discharge Process, (John Wiley & Sons, NewYork, U. S. A, (1980), Chap.3.
    [21] 林光隆,國立成功大學 材料科學及工程學系,"材料表面工程講義",chap.7,(2001).
    [22] L. John Vossen and Werner Kerm, "Thin Film Process", Academic Process, (1999), 134.
    [23] R. F. Bunshah, "Deposition Technologies for Films and Coatings", Noyes Publications, Park Ridge, New Jersey, U. S. A., (1982).
    [24] J. Venables, "Nucleation and Growth of Thin films", Rep. Prog. Phys., 47 (1984) 399.
    [25] John A. Thornton, "Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings", J. Vac. Sci. Technol., 11(4)(1974), 666~670.
    [26] 艾啟峰,"電漿工程科技在表面處理工業應用之發展(上) ",科儀新知,(1998).
    [27] L. Gupta, A. Mansingh and P.K.Srivastava, "Band Gap Narrowing and the Band Structure of Tin-Doped Indium Oxide Films", Thin Solid Films, 176(1989), 33~44.
    [28] 李玉華,"透明導電膜及其應用",科儀新知,第十二卷第一期(1990),94~102.
    [29] E. Burstein, "Anomalous optical absorption limit in InSb", Phys. Rev. 93(1954), 455.
    [30] H.L Hartangel, A.L. Dawar, A.K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics, Philiadelphia, (1995), 219-230.
    [31] M. Ohing, "The Materials Science of Thin Films", printed in the United States of America, (1991), 11~112.
    [32] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. muilenberg(Editor), "HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY", Eden Prairie, Minn., Physical Electronics, 1995.
    [33] D. Briggs and M.P. Seah, "Practical Surface Analysis", Chichester, Wiley, c1990-c1992, New York.
    [34] John F. Moulder, Jill Chastain, Roger C. King "Handbook of x-ray photoelectron spectroscopy : a reerence book of standard spectra for identification and interpretation of XPS data", Eden Prairie, Minn., Physical Electronics, c1995.
    [35] 陳力俊,"材料電子顯微鏡學",國科會精儀中心發行,修訂再版(1994),75~77.
    [36] A. Amaral, P. Brogueira, C. Nunes de Carvalho and G. Lavared, "Early stage growth structure of indium tin oxide thin films deposited by reactive thermal evaporation", Surface and Coatings Technology, 125 (2000), 151-156.
    [37] Jianguo Lu, Zhizhen Ye, Jingyun Huang, Lei Wang and Binghui Zhao, "Synthesis and properties of ZnO films with (110) orientation by SS-CVD", Applied Surface Science, 207(2003), 295-299.
    [38] Carl. V. Thompson, Roland Carel, "Texture development in poly crystalline thin films", Material Science and Engineering, B32(1995), 211-219.
    [39] T. Young, Phil. Trans. R. Soc. (London), 95(1805), 65-87.
    [40] F. M. Fowkes, J. Phys. Chem., 66(1962), 382.
    [41] D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci, 13 (1969), 1741-1747.
    [42] Q. Zhao, Y. Liu and E. W. Abel, "Effect of temperature on the surface free energy of amorphous carbon films", Journal of Colloid and Interface Science, 280(2004), 174-183.
    [43] D.E. Packham, "Surface energy, surface topography and adhesion", International Journal of Adhesives, 23(2003), 437-448.

    下載圖示 校內:立即公開
    校外:2006-07-26公開
    QR CODE