| 研究生: |
黃聖瑋 Huang, Sheng-Wei |
|---|---|
| 論文名稱: |
樞軸式噴注器流量限制探討 Investigation of the Constrains of the Flow Design for Pintle Injector |
| 指導教授: |
袁曉峰
Yuan, Tony |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 樞軸式噴注器 |
| 外文關鍵詞: | pintle injector, channel |
| 相關次數: | 點閱:57 下載:31 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
樞軸式噴注器(pintle injector)由於構造簡單,且無燃燒不穩定性,故已被廣泛使用在太空任務上。傳統上樞軸式噴注器為一股推進劑流經內管以徑向噴注,而另一股推進劑則是以環狀的薄膜軸向噴出,樞軸式噴注器常常利用多孔或是雙排多孔來增加徑向噴流與軸向噴流的撞擊,但在高O/F ratio時,可能會有部分軸向噴流無法被徑向噴流帶離噴注器的問題,故本研究在樞軸式噴注器上加上溝槽,以限制軸向噴流的流動,使得軸向噴流與徑向噴流有較完整的撞擊。
本研究的目的,是研究自行設計的樞軸式噴注器之流量使用限制,並利用PLIF(Planar Laser–Induced Fluorescence)技術,取得二維質量機率分布圖與混合比圖,進行噴注的觀察實驗分析,實驗結果顯示,適當的溝槽寬度與徑向噴孔孔徑之比值(W/D≈1.5),對於樞軸噴注器噴注器的流量限制範圍與兩噴流混合上有相當的幫助,且動量比是主要影響噴注的混合、質量分布等特性的重要參數。
Pintle type injector has been widely used in space mission because it is easier to design and it leads to more stable combustion. The conventional pintle injector design creates mixing between radial flow and axial flow of propellants from orifices and on surface of a closed end tube, respectively. Single- or multi-row of orifices for the radial flows are common used in the design to make sure proper impingement between propellants. However, it is difficult to have complete impingement at high propellant flow rate ratio conditions that some of the axial flow propellant may bypass the radial jets. This research focuses on the design of a pintle injector with channels to restrict the axial flow and expect a more efficient mixing of propellants. PLIF technique is utilized in this study to observe the mass distribution and mixing ratio with different design parameters. The results show that appropriate channel width helps the liquid mass distributed more uniform and have more efficient mixing. In this study, the channel width is suggested to be 1.5 times of orifice diameter. As momentum flux ratio is increased, the mass distribution becomes more uniform as well as mixing ratio.
1. Sutton, G.P., Rocket Propulsion Element, John Wiley & Sons, Inc., 1992.
2. 王群凱,”兩階段衝擊式液態推進劑噴注系統設計”,成功大學航太所碩士論文
3. G.S Gill and Nurick, “Liquid Rocket Engine Injector”, NASA SP-8089 March 1976
4. Dressler , G.A., and Bauer, J.M., “TRW Pintle Engine Heritage and performance Characteristics.”, AIAA paper 2000-3871, July 2000.
5. Escher, D.W., “Design and Preliminary Hot Fire and Cold Flow Testing of Pintle Injectors,” M.S. Thesis, Mechanical Engineering Dept., Pennsylvania State Univ., Dec.1996.
6. Elverum, G., Staudhammer, P., Miller, J., Hoffman, A., and Rockow, R., “The Descent Engine for the Lunar Module,” AIAA Paper 67-521, July 1967.
7. Gilroy, R., and Sackheim, R., “The Lunar Module Descent Engine-A Historical Perspective,” AIAA Paper 89-2385, 1989.
8. Austin, B. J., “Development of a Pintle-Based Engine for Nontoxic Hypergolic Propellants,”38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 2002.
9. Heister, S. D., Nguyen, T. T., and Karagozian, A. R., “Modeling of Liquid Jets Injected Transversely into a Supersonic Crossflow,” AIAA Journal, Vol. 27 No. 12, 1989, pp. 1727-1
10. R. M. KELSO, T. T. LIM and A. E. PERRY, “An experimental study of round jets in cross-flow,” J. Fluid Mech. (1996), vol. 306, pp. 111-144
11. Vigor Yang ,Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design, 2004, P160.