| 研究生: |
林志勳 Lin, Chih-Shun |
|---|---|
| 論文名稱: |
於分波多工光纖網路運用圖形特徵分析之動態群播訊流匯整之研究 Dynamic Multicast Traffic Grooming Based on Centrality Analysis for WDM Networks |
| 指導教授: |
林輝堂
Lin, Hui-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 分波多工光纖網路 、群播 、訊流匯整 、社群網路分析 |
| 外文關鍵詞: | WDM, multicast, traffic grooming, SNA |
| 相關次數: | 點閱:108 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來在分波多工光纖網路之下,伴隨著越來越多的群播應用服務的使用,傳統的單對單傳輸機制因不能有效利用頻寬而無法負擔如此大量的傳輸要求,因此勢必要針對群播服務提出相對應的群播傳輸機制。現今雖有許多群播服務的訊流匯整機制被提出來,但沒有根據網路環境中的節點特性來建立適當的傳輸機制。因此本研究根據社群網路分析 (SNA, social network analysis)的圖學分析理論,在群播繞徑機制上提出三種不同的繞徑權重設計,分別為ACCR (Adaptive Closeness Centrality Routing)、ABCR (Adaptive Betweenness Centrality Routing)、ACBCR (Adaptive Closeness-Betweenness Centrality Routing)。此外,拆解光樹機制也是在探討群播服務中一個重要的議題,拆解光樹機制可以減少光樹的目的端節點數量以增加訊流匯整的機率,進而提升整體的頻寬利用率。因此本研究亦提出一套拆樹機制,稱為BTD (Branch Tree-Division) 做為拆樹的機制,藉此增加網路頻寬的使用率。再者,本碩士論文探討在不同的拆樹機制下,本研究提出的繞徑權重對於群播訊流匯整的相關效能表現。模擬結果顯示,本研究提出的繞徑方式有較低連線阻斷率並且將OEO(Optical-Electronic-Optical)轉換程度維持在一個可接受的範圍之內。
In recent years, due to the emergence of multicast applications, using unicast schemes for serving multicast traffic is not efficient in terms of bandwidth utilization in a WDM network. Thus, an effective multicast scheme achieving excellent bandwidth utilization is critical for supporting multicast communication. In general, the effectiveness of a multicast scheme is evaluated by the overall cost incurred by its constructed multicast light tree. Recently, Social Network Analysis (SNA) has been successfully applied in networking research and achieved excellent network performance. In this study, three different multicast light tree construction schemes based on different SNA techniques are proposed. These schemes are called Adaptive Closeness Centrality Routing (ACCR), Adaptive Betweenness Centrality Routing (ABCR) and Adaptive Closeness-Betweenness Centrality Routing (ACBCR). On the other hand, in order to achieve better bandwidth utilization in a WDM network, usually a multicast light tree is further decomposed into multiple smaller light trees to allow traffic grooming. To address this issue, the current study proposes a light tree decomposition scheme called Branch Tree Division (BTD). Finally, simulation results have shown that the proposed schemes achieve a lower blocking probability while maintaining a comparable number of OEO (Optical-Electronic-Optical) conversions.
[1] A. E. Kamal, “Algorithms for multicast traffic grooming in WDM mesh networks,” IEEE Communications Magazine, vol. 44, no. 11, pp. 96 – 105, Nov. 2006.
[2] A. Gadkar, J. Plante, and V. M. Vokkarane, “Multicast overlay for high-bandwidth applications over optical WDM networks,” IEEE/OSA Journal of Optical Communications and Networking, vol. 4, no. 8, pp. 571 – 585, Aug. 2012.
[3] A. Khalil, A. Hadjiantonis, C. M. Assi, A. Shami, G. Ellinas, and M. Ali, “Dynamic provisioning of low-speed unicast/multicast traffic demands in mesh-based WDM optical networks,” Journal of Lightwave Technology, vol. 24, no. 2, pp. 681 – 693, Feb. 2006.
[4] A. Khalil, C. Assi, A. Hadjantonis, G. Ellinas, M. Ali, “On multicast traffic grooming in WDM networks,” The Ninth IEEE Symposium On Computers and Communications, Alexandria, June – July 2004.
[5] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509 – 512, Oct. 1999.
[6] A.-L. Barabási and E. Bonabeau, “Scale-Free networks,” Scientific American 288, pp. 60 – 69, May 2003.
[7] B. Chen, W.D. Zhong, S. Bose, Y.H. Jin, “Dynamic multicast traffic grooming in IP/MPLS over WDM mesh networks, ” Fourth International Conference on Optical Internet, Chongqing, China, pp.184 – 189, May 30 – June 1, 2005.
[8] C. Lu, X. Nie, S.Wang, and L. Li, “Efficient dynamic multicast traffic grooming algorithm on WDM networks,” Proc. SPIE, vol. 6022, pp.602230.1 – 602230.10, Dec. 2005.
[9] D. Katsaros, N. Dimokas, L. Tassiulas,” Social network analysis concepts in the design of wireless ad hoc network protocols,” IEEE Network, vol. 24, no. 6, pp. 23 – 29, Nov. 2010.
[10] G. V. Chowdhary and C. S. R. Murthy, “Grooming of multicast sessions in WDM mesh networks,” First Annual International Conference on Broadband Networks, San Jose, California, 2004.
[11] G. V. Chowdhary, C. S. R. Murthy, “Dynamic multicast traffic engineering in WDM groomed mesh networks,” Proc. IEEE Broadnets, 2004.
[12] H. V. Madhyastha, G. V. Chowdhary, N. Srinivas, and C. S. R. Murthy, “Grooming of multicast sessions in metropolitan WDM ring networks,” Computer Networks, vol. 49, no. 4, pp. 561 – 579, Nov. 2005.
[13] L. H. Sahasrabuddhe and B. Mukherjee, “Light-trees: optical multicasting for improved performance in wavelength-routed networks,” IEEE Communications Magazine, vol. 37, no. 2, pp. 67 – 73, Feb. 1999.
[14] L. Liao, L. Li, S. Wang, “Dynamic multicast traffic grooming in WDM mesh networks,” Second Conference on Next Generation Internet Design and Engineering, pp. 366 – 370, April. 2006.
[15] M. A. Saleh and A. E. Kamal, “Dynamic provisioning of optical networks with many-to-many traffic grooming,” Proceedings of 19th International Conference on Computer Communications and Networks, pp. 1 – 7, Aug. 2 – 5, 2010.
[16] M. Kas, S. Appala, C. Wang, K. M. Carley, L. Richard Carley, and Ozan K. Tonguz, ” What if wireless routers were social? Approaching wireless mesh networks from a social networks perspective,” IEEE Wireless Communications, vol. 19, no. 6, pp. 36 – 43, 2012.
[17] M. R. Garey, R. L. Graham, and D. S. Johnson, “The complexity of computing steiner minimal trees,” Siam Journal on Applied Mathematics, vol. 32, no. 4, pp. 835 – 859, 1977.
[18] R. Lin,W. D. Zhong, S. K. Bose, and M. Zukerman, “Light-tree configuration for multicast traffic grooming in WDM mesh networks,” Photonic Network Communications, vol. 20, no. 2, pp. 151 – 164, Oct. 2010.
[19] R. Lin,W. D. Zhong, S. K. Bose, and M. Zukerman, “Dynamic sub-light-tree based traffic grooming in WDM mesh networks,” Global Telecommunications Conference, pp. 1 – 5, Dec. 6 – 10, 2010.
[20] R. Lin, W. D. Zhong, S. Bose, and M. Zukerman, “Leaking strategy for multicast traffic grooming in WDM mesh networks,” Journal of Lightwave technology, vol. 30, no. 23, pp. 3709 – 3719, Dec. 1, 2012.
[21] R. Ul-Mustafa and A. E. Kamal, “Design and provisioning of WDM networks with multicast traffic grooming,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 4, pp. 37 – 53, Apr. 2006.
[22] S. Lee, H. Yen, and A. Chen, “Traffic grooming for IP multicast over WDM networks using light-path and light-tree schemes,” Proceedings of Ninth International Conference on Networks, vol. 1, pp. 291 – 293, April 11 – 16, 2010.
[23] H. Takahashi, A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math. Japonica 24, 573 – 577, 1980.
[24] W. Hou, L. Guo, J. Cao, J.Wu, and L. Hao, “Green multicast grooming based on optical bypass technology,” Optical Fiber Technology, no. 17, pp. 111 – 119, 2011.
[25] X. Yu, G. Xiao, and T. Cheng, “Dynamic multicast traffic grooming in optical WDM mesh networks: lightpath versus light-tree,” IEEE/OSA Journal of Optical Communications and Networking, vol. 5, no. 8, pp. 870 – 880, Aug. 2013.
[26] Y. Sun, J. Gu, and D. H. K. Tsang, “Multicast routing in all-optical wavelength-routed networks,” SPIE Optical Network Magazine, vol. 2, no. 4, pp. 101 – 109, Aug. 2001.