研究生: |
呂岱容 Lu, Dai-Jung |
---|---|
論文名稱: |
何種交易型態推動股價波動? What kinds of trades move stock prices? |
指導教授: |
陳俊男
Chen, Chun-Nan |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 訊息不對稱 、相異資訊解讀 、價格與數量關係 、隱藏性交易假說 |
外文關鍵詞: | differential interpretation, asymmetry information, stealth trading hypothesis, volume-volatility relation |
相關次數: | 點閱:201 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
股票報酬率與交易量的關係,不僅說明了股票市場的動態結構及效率性,同時亦說明內部訊息對於整體市場的影響。討論股價波動的相關文獻中,顯示出中額交易、交易頻繁市場中可能包含內部訊息交易,因而推動股價變動。本篇論文與之前文獻不同之處在於,我們將交易型態區分為向上、向下、無方向三種方向類型,作為訊息不對稱與相異資訊解讀之代理變數,並進一步配合其他三個可能推動股價的要素,包含交易額大小、市場交易頻繁程度、投資者的類型,分析股價波動主要係由何種型態之交易所推動,並研究各因素間是否存在交互作用。本研究參考Barclay and Warner(1993)驗證之隱藏性交易假說之方法,比較分析美國TORQ資料庫中樣本公司之累積股價波動比例與累積交易次數比例。實證結果發現,股價波動主要都是由具方向性之交易搭配中額交易、交易頻繁市場、機構投資人所推動,此結果顯示出股價波動主要是由訊息不對稱所引起而非相異資訊解讀所導致。本篇論文研究樣本並不侷限於股價報酬高於市場報酬的公司(隱含有內部交易存在),因此結論更具一般性。
The relationship between stock return and volume shows not only the dynamic structure of the stock market, but also the influence of inside information on the market. Recent empirical research provides evidence that private information revealed through trading is largely responsible for volatility, and it is medium-size trades and thick-market period that may contain inside trading and may in turn move the price. Different from previous studies, our study classifies trades into three directions including upward, downward and unidirectional. Coupled with other factors, our study further tries to find out what kind of trades move stock price in different categories and to gain a clear insight into whether there is an interaction effect between these factors.
This paper follows the method of Barclay and Warner (1993) and compares the proportion of cumulative price change with the proportion of the cumulative trades. However, we define price change as the absolute value of the trade price minus the price of the previous trade which is different from the definition of Barclay and Warner’s. In an effort to enrich our understanding of trades that move stock price, we classify trades in TORQ database by four factors including trade sizes, market thickness, identity of investors and directions of stock price. Our results reveal that upward-direction trades display the most disproportionately largest percentage of cumulative price changes relative to their percentage of all trades.
1. Admati, A. R., and P. Pfleiderer, “A Theory of Intraday Trading Patterns: Volume and Price Variability,” Review of Financial Studies, 1988, Vol.1, 3-40
2. Andersen, T. G., “Return Volatility and Trading Volume:An Information Flow Interpretation of Stochastic Volatility,” Journal of Finance, 1996, Vol.51, 170-204.
3. Barclay, M.J., R. H. Litzenberger, and J. B. Warner, “Private Information, Trading Volume and Stock-return Variances,” Review of Financial studies, 1990, Vol. 3,233-253
4. Barclay, M. J., and J. B. Warner, “Stealth Trading and Volatility: Which Trades Moves Prices? ” Journal of Financial Economics, 1993, Vol. 34, 281-306
5. Chakravarty, S., “Stealth-trading: Which Traders’ Trades Move Stock Prices? ”Journal of Financial Economics, 2001, Vol. 61, 287-307
6. Chan, K., and W. Fong, “Trading Size, Order Imbalance, and the Volatility-Volume Relation,” Journal of Financial Economics, 2000, Vol. 57, 247-273.
7. Chan, L., and J. Lakonishok, “The Behavior of Stock Prices Around Institutional Trades,” Journal of Finance, 1995, Vol. 50, 1147-1174.
8. Easley, D. and M. O’Hara, “Price, Trade Size and Information in Securities
Market,” Journal of Financial Economics, 1987, Vol. 19, 69-90.
9. Easley, D. and M. O’Hara, “Time and the Process of Security Price Adjustment,” Journal of Financial Economics, 1992, Vol. 47, 577-606
10. Easley, D. N., M. Kiefer, M. O’Hara, and J. B. Paperman, “Liquidity, Information, and Infrequently Traded Stocks”, Journal of Finance, 1987, Vol.51, 1405-1436.
11. Epps, T. W., and Epps, Mary Lee, “The Stochastic Dependence of Security Price Change and Transaction Volumes: Implication for the Mixture-of-Distribution Hypothesis”, Econometrica, 1976, Vol.44, no.2, 305-321.
12. French, K. R. and R. Roll, “Stock Return Variances:the Arrival of Informational and the Reaction of Traders,” Journal of Financial Economics, 1986, Vol.17, 5-26
13. Hasbrouck, J., “Using the TORQ Database,” NYSE Working Paper, 1992, 92-105
14. Harris, L., “Transaction Data Test of the Mixture of Distributions Hypothesis”, Journal Financial and Quantitative Analysis, 1987, Vol.22, no.2, 127-141.
15. Harris, M., and A. Raviv,” Differences of Opinion Make a Horse Race,” Rev. of Financial Studies 6, 1993, no.3, 473-506
16. Kandel, E., and N. Pearson,” Differential Interpretation and Trade in Speculative Markets,” Journal of Political Economy, 1995, Vol.103, No.4, 831-872
17. Karpoff J. M. “The Relation between Prices Change and Trading Volume: A Survey,” Journal Financial and Quantitative Analysis, 1987, Vol.22, 109-126
18. Kim, O., and Robert E. Verrecchia,” Trading Volume and Prices Reactions to Public Announcements,” Journal of Account Research, 1991, Vol.29, 302-321
19. Kyle, A. S., “Continuous Auctions and Insider Trading,” Econometrica, 1985, Vol. 53, 1315-1335
20. Jones, C. M., G. Kaul, and M. L. Lipson, “Information, trading, and volatility,” Journal of Financial Economics, 1994, Vol.36, 127-154
21. Lee, C. M. C., and M. Ready, “Inferring Trade Direction from Intraday Data,” Journal of Finance, 1991, Vol. 46, 733-746
22. Stoll, Hans, “The Supply of Dealer Services in the Securities Markets. ”Journal of Finance, 1978, Vol. 33, 1133-1151
23. Tay, Anthoy, Christopher Ting, Yiu-Kuen Tse, and Mitch Warachka, “Transaction-Data Analysis of Marked Durations and Their Implications for Market Microstructure”, Working Paper, 2004.
24. Tauchen, G. E., and M. Pitts, “The Price Variability-Volume Relationship on Speculative Markets”, Econometrica, 1983, Vol.51, no.2, 485-505.