簡易檢索 / 詳目顯示

研究生: 任陳銘
Ren, Chen-Ming
論文名稱: 電滲流在微流體晶片之聚焦/無閥切換與電動不穩定現象之研究
Electroosmotic Flow Focusing/Valveless Switching and Electrokinetic Instability Phenomenon in Microfluidic Channels
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 電動不穩定無閥切換聚焦電滲流
外文關鍵詞: Valveless Switching, Focusing, Electrokinetic Instability, Electroosmotic Flow
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以實驗之方式進行電驅動流體在微流體晶片傳輸問題之探討,所探討之問題主要可分為兩大部分:
    第一部分為以簡單操作模式控制多重樣品流體(M x N)之電動聚焦及無閥切換(註:M為樣品流數量、N為出口端數量)。其操控原理為:由於玻璃管道之表面電位勢為負電位,根據Helmholtz-Smoluchowski方程式可知電驅動流體之流動方向與電位勢梯度方向同向,流體之流向可藉由電場之控制而被操控,因此在M x N微流體無閥切換裝置上,若要將樣品流操控至所指定之出口管道,只需控制所指定之出口管道具有電位勢梯度存在,其餘出口管則無電位勢梯度存在,則樣品流則可輕易地流向所指定之管道。實驗與數值模擬之結果皆顯示藉由此操作模式,樣品流可輕易地被切換至所指定之出口管道。
    第二部分為多重樣品流之電動不穩定現象與其應用於微流體混合之探討。由於檢測樣品流與邊鞘流之電導率( )通常會有差異而有電導率梯度存在,而根據Poisson方程式與歐姆電流模式(Ohmic current model),可得淨電荷密度為 ,由此可知在樣品流與邊鞘流之界面上存在著淨電荷密度,也就是說遠離壁面處亦有電動力存在,而當電場強度達到一臨界值,電動不穩定之現象將會發生於微管道中,此不穩定之流場將有助於提升樣品之混合效率。先前之電動不穩定之研究,大都為單一層界面,如T型進樣管道,而本研究之晶片為多重樣品進樣管道(M x N),其擁有2M層界面,實驗結果顯示混合效率可在短時間及短距離內被有效地提升。最後本研究結合第一部分中之操控模式,使得電動不穩定之多重樣品流可任意切換於所指定之出口管道。

    In this study, we investigate the electrokinetically-driven flow transport phenomena in microfluidic chips experimentally. Two main issues are studied as follows:
    Firstly, we study the control of the electrokinetic multiple sample flows focusing/valveless switching in an MxN microfluidic chip based on electrokinetic forces (note: M is the number of sample stream and N is the number of outlet port). According to the electrokinetic body force term in the equation of motion or Helmholtz-Smoluchowski equation, we know that the flows are driven electrokinetically along the direction of the externally applied electrical potential gradient. Therefore, the direction of electrokinetic flow streams can be easily guided by controlling the externally applied electrical potential distributions in microchannels. Experimental and numerical simulation results both show the sample flows can be pre-focused into narrow streams and then guided directly into the desired outlet ports using this simple control model.
    Secondly, the electrokinetic instability phenomenon of multi-interface layers (2M) (note: the interface layer between the sample flow and sheath flow) and its application in micro-mixing are investigated experimentally. In practice, there is a difference in electrical conductivity between sample flow and sheath flow, i.e., the electrical conductivity gradient exists at the interface between sample flow and sheath flow. According to the Poisson equation and the Ohmic current model, the net charge density can be expressed as , and then we can know that the net charge density exist in the bulk liquid when the electrical conductivity gradients exist in microchannels, i.e., there are electrical body forces away from the channel walls (i.e., electrical double layer). At critical electrical field strength, this induced electrical body force will result in an instability flow field. This unstable flow field can be used to enhance the species mixing in microchannels and the mixing length and mixing time can be reduced effectively. Finally, using the simple control model previously, the electrokinetic instability multi-streams can also be directed into desired outlet channel.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 IX 符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 微機電系統 1 1-3 生物晶片 2 1-4 微流體 2 1-5 電雙層的形成機制 3 1-6 電滲流的形成機制 4 1-7 文架構 4 第二章 電滲流流場之統御方程式 6 2-1 電滲流之描述 6 2-2 電滲流之基本假設 6 2-3 描述電雙層分佈之Poisson-Boltzmann方程式 7 2-4 描述外加電場電位勢分佈之Laplace 方程式 8 2-5 描述電滲流流場之Navier-Stokes 方程式 8 2-6 描述檢測液濃度分佈之濃度方程式 9 2-7 標準通式模式之電滲流模擬 11 2-7-1 幾何外形與邊界條件之設定 11 2-7-2 標準通式之設定 12 2-7-3 結果與驗證 15 第三章 材料與方法 16 3-1 光罩製作 16 3-2 晶片製程 16 3-2-1 晶片清洗 17 3-2-2 去水烘烤 17 3-2-3 塗佈HMDS 17 3-2-4 塗佈光阻 18 3-2-5 軟烤 18 3-2-6 曝光 19 3-2-7 顯影 20 3-2-8 硬烤 21 3-2-9 濕式蝕刻 21 3-2-10 濕式去光阻 22 3-2-11 鑽孔 23 3-2-12 清洗與對位 23 3-2-13 高溫熔融接合 24 3-2-14 晶片製作簡易流程 24 3-3 實驗設備 24 3-3-1 顯微影 24 3-3-2 影像擷取單元(CCD) 24 3-3-3 電源供應器 25 第四章 微流體進樣晶片 26 4-1 研究動機 26 4-2 文獻回顧 26 4-3 數值模擬 27 4-3-1 數值模擬之幾何形狀與參數設定 28 4-3-2 邊界條件之設定 28 4-4 微流體進樣晶片之實驗 29 4-4-1 微流體進樣晶片之幾何 29 4-4-2 微流體進樣晶片之實驗步驟 30 4-5 結果與討論 30 4-5-1 微流體進樣晶片(1)之結果 30 4-5-2 微流體進樣晶片(2)之結果 33 4-6 結論 33 第五章 電動不穩定混合晶片 34 5-1 研究動機 34 5-2 文獻回顧 34 5-3 電動不穩定的說明 35 5-4 電動不穩定混合晶片之幾何 37 5-5 電動不穩定混合晶片之實驗步驟 37 5-6 結果與討論 38 5-6-1 流場的變化 39 5-6-2 濃度分佈圖 39 5-6-3 混合效率 41 5-7 電動不穩定混合晶片之切換 43 5-8 結論 43 第六章 總結與未來展望 44 6-1 總結 44 6-2 未來展望 44 參考文獻 46

    1.Gravesen P., Branebjerg O. J. and Jensen S. “Microfluidics – a Review,” Journal of Micromechanics and Microengineering, 3, 168-182 ,1993.
    2.Shoji S., “Microfabrication Technologies and Micro-flow Devices for Chemical and Bio-chemical Micro Flow Systems, ” Microprocesses and Nanotechnology , 99, 72 –73 ,1999.
    3.Harrison D. J. and Berg A., “Micro Total Analysis Systems ’98,” Kluwer Academic Publishers, Netherlands , 1998.
    4.Jain K. K., “Applications of biochip and microarray systems in pharmacogenomics,” Pharmacogenomics, 3, 289-307, 2000.
    5.van Hal N. L., Vorst O, van Houwelingev A. M.,Kok E. J.,Peijeneburg A,Aharoni A , VanTunen A. J.,Keijer J. “The application of DNA microarrays in gene expression analysis,” Journal of Biotechnology, 78, 271-280, 2000.
    6.Erill I., Villa R., Goufignon P., Fonseca L., and Plaza J. A., “Silicon
    microsystem passivation for high-voltage applications in DNA chips,”
    Microelectronics and Reliability, 40, 787-789, 2000.
    7.Richter T., Loranelle L., Richtard O. D., Bilitewski U and Harrison D. J.,
    “Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent
    compounds in microfluidic devices: Determination of xanthine,” Sensors
    and Actuators B, 81, 369-376, 2002.
    8.Vinet F., Chaton P and Fouillet Y., “Microarrays and microfluidic devices Miniaturized systems for biological analysis,” Microeletronic Engineering, 61-62, 41-47, 2002.
    9.Beebe D. J., Wheeler M., Zeringue H., Walters E and Raty S., “Microfluidic technology for assisted reproduction,” Theriogenology, 57, 123-135, 2002.
    10.Reyes D. R., Iossifidis D., Auroux P. A. and Manz A., “Micro total analysis systems: 1. introduction, theory, and technology,” Analytical Chemistry, 74, 2623-2636, 2002.
    11.Tuckermann, D. B. and Pease, R. F. W., “ High-Performance Heat Sinks
    for VLSI,” IEEE Electron Device Lett., 2, 126-129, 1981.
    12.Peng X. F., Peterson G. P. and Wang B. X., “ Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannel,”
    Experimental Heat Transfer, 7, 249-264, 1994.
    13.Mala G. M. and Li D., “ Flow Characteristics of Water in Microtubes,”
    International Journal of Heat and Fluid Flow, 20, 142-148, 1999.
    14.Qu W., Mala G. M. and Li D., “ Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels,” International Journal of Heat Mass Transfer, 43, 353-364, 2000.
    15.Papautsky I., Brazzle J.,Ameel T. A. and Frazier A. B., “Laminar Fluid Behavior in Microchannels Using Micropolar Fluid Theory,” Sensors and Actuators A, 73, 101-108, 1999.
    16.Peng X. F., Peterson G. P. and Wang B. X., “ Heat Transfer Characteristics of Water Flowing Through Microchannel,” Experimental Heat Transfer, 7, 265-283, 1999.
    17.Wang B. X. and Peng, X. F., “ Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels,” International Journal of Heat Mass Transfer, 37, 73-82, 1994.
    18.Hunter R. J.,“ Zeta Potential in Colloid Science: Principles and Appliciations,” Academic Press, New York,1981.
    19.Mala G. M., Li, D., Werner C., Jacobasch H.-J. and Ning Y. B., “ Flow Characteristics of Water Through a Microchannel between Two Parallel Plates with Electrokinetic Effects,” International Journal of Heat and Fluid Flow, 18, 489-496, 1997.
    20.Yang C. and Li D.,“ Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels,”, Journal of Colloid and Interface Science, 194, 95-107, 1997.
    21.Probstein R. F., “Physicochemical hydrodynamics: an introduction,” 2nd
    ed., John Wiley and Sons, New York, 1994.
    22.Manz A., Graber N. and Widmer H.M., “Miniaturized Total Chemical
    Analysis System: A Novel Concept for Chemical Sensing,” Sensors and
    Actuators B, 1, 244-248, 1990.
    23.Andreev V. P., Dubrovsky S. G. and Stepanov Y. V., “ Mathematical Modeling of Capillary Electrophoresis in Rectangular Channels,” Journal of Microcolumn Separations, 9, 443-450, 1997.
    24.Patankar N. A. and Hu H. H., “ Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, 70, 1870-1881, 1998.
    25.Hu L., Harrison J. D. and Masliyah J. H., “ Numerical Model of Electrokinetic Flow for Capillary Electrophoresis,” Journal of Colloid and Interfac Science, 215, 300-312, 1999.
    26.Arulanandam S. and Li D., “ Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping,” Colloids and Surfaces A:
    Physicochemical and Engineering Aspects, 161, 89-102, 2000.
    27.Ren L. and Li D., “ Electroosmotic Flow in Heterogeneous Microchannels,”Journal of Colloid and Interface Science, 243, 255-261, 2001.
    28.Hunter R. J., “ Zeta Potential in Colloid Science: Principles and Appliciations,” Academic Press, New York, 1981.
    29.Yang C., Li D. and Masliyah J. H., “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects,”
    International Journal of Heat and Mass Transfer, 41, 4229-4249, 1998.
    30.Dongqing Li,“Electrokinetics in Microfluidics,” Ch.4,Elsevier Academic Press, 2004.
    31.Wolf S.,“Silicon Processing for the VLSI Era,” Ch.12, Lattice Press, 1986.
    32.Elliott D.J.,“Integrated Circuit Fabrication Technology,” 2nd Ed ., McGraw Hill, 1989.
    33.Bowden M. and thompson L.,“introduction to Microlithography,” , American Chemical Society , 1983.
    34.Deforest W.S., “Photoresist:Materials and Proceses,”McGraw-Hill, 1975.
    35.Elliott D.J,“Integrated Circuit Fabrication Technology,”2nd Ed., McGraw Hill, 1989.
    36.Fu L. M., Yang R. J., Lee G. B. and Pan Y. J.,“Multiple Injection techniques for microfluidic sample handling, ” Electrophresis, 24, 3026-3032, 2003.
    37.Harrison D. J., Manz A. and Ludi Z. H., “Capillary electrophoresis andsample injection systems integrated on a planar glass chip,” Analytical Chemistry, 64, 1926-1932, 1992.
    38.Seiler K., Harrison D. J. and Manz A., “Planar glass chip for capillary electrophoresis: repetitive sample injection, quantitation, separation efficiecy,” Analytical Chemistry, 65, 1481-1488, 1993.
    39.Döring C., Grauer T., Marek J., Mettner M., Trah H. P. and Willman M.,“Micromachined thermoelectrically driven cantilever beams for fluid deflection,” Proc. IEEE Micro Electro Mechanical Systems Workshop,MEMS, 12-18, 1992.
    40.Blankeustein G and Larsen U. D., “Modular concept of a laboratory on a chip for chemical and biochemical analysis , Biosensor and bioeletronics, ” 13, 427-438, 1998.
    41.Ismagilov R.F.,Rosmarin D., Kenis P.A.,Chiu D. T., Zhang W, Howard.,Stone H. A. and Whitesides G. M., “Pressure-Driven Laminar Flow in Tangential Microchannels an Elastomeric Microflulidic Switch,”, Analytical Chemistry, 73, 4682-4687, 2001.
    42.Lee G. B., Hung C. I., Ke B. J., Huang G. R. and Hwei B. H.,
    “Micromachined pre-focused 1×N flow switches for continuous sample
    injection,” Journal of Micromechanics and Microengineering, 11,
    567-573, 2001.
    43.Lee G. B., Hwei B. H. and Huang G. R., “Micromachined pre-focused
    M×N flow switch for continuous sample injection,” Journal of Micromechanics and Microengineering, 11, 654-661, 2001.
    44.Lemoff A. V. and Lee A. P., “An AC Magentohydrodynamic Microfluidic Switch for Micro Total Analysis Systems,”Biomedical Microdevices 5, 55-60, 2003.
    45.Chein R. and Tsai S. H. , “Microfluidic Flow Switching Design Using Volume of Fluid Model,”Biomedical Microdevices , 6, 81-90, 2004.
    46.Kim S. J., Lim Y. T., Shin H. Y. B., Kim K., Lee D. S., Park S. H. and Kim Y. T., “Passive Microfluidic Control of Two Merging Streams by Capillarity and Relative Flow Resistance, ” Analytical Chemistry, 77, 6494-6499, 2005.
    47.Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J.G.,Adrian, R. J., Aref, H. and Beebe, D. J., “ Passive Mixing in a Three-Dimensional Serpentine Microchannel,”IEEE Journal of Microelectromechanical Systems, 9, 190-197, 2000.
    48.Qian, S. and Bau, H. H., “ A Chaotic Electroosmotic Stirrer,” Analytical
    Chemistry, 74, 3616-3625, 2002.
    49.Erickson, D. and Li, D., “ Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing,” Langmuir,18,1883-1892
    , 2002.
    50.Moctar A. O. E., Aubry N. and Batton J., “Electro-hydrodynamic micro-fluidic mixer.” Lab on a Chip, 3, 273-280, 2003.
    51.Glasgow I. and Aubry N., “Enhancement of microfluidic mixing using time pulsing,” Lab on a Chip, 3, 114-120, 2003.
    52.Park S. J., Kim J. K., Park J., Chung S., Chung C. and Chang J. K.,“Rapid three-dimensional passive rotation micromixer using the breakup process.” Journal of Micromechanical and Microengineering, 14, 6-14, 2004.
    53.Okkels F. and Tabeling P.,“Spatiotemporal resonances in mixing of open viscous fluids.” Physical Review Letters, 92, 038301, 2004.
    54.Yaralioglu G. G.,Wyant L. O.,Marentis T. C. and Yakub B. T. K.,“Ultrasonic mixing in microfluidic channels using integrated transducers.” Analytical Chemistry, 76, 3694-3698, 2004.
    55.Chen C.H.,Lin H.,Lele S. K. and Santiago. J. G., “Convective and absolute eletrokinetic instability with conductivity gradients.” Journal of Fluid Mechanics. 524, 63-303, 2005.
    56.Johnson T. J., Ross D. and Locascio L. E., “Rapid microfluidic mixing. ” Analytical Chemistry, 74, 45-51, 2002.
    57.Posner. J. D. and Santiago. J. G., “Convective instability of electrokinetic flows in a cross-shaped microchannel.” Journal of Fluid Mechanics. 555, 1-42, 2006.
    58.Lin C. H., Lee G. B., Lin Y. H. and Chang G. L., “A Fast Prototyping Process for Fabrication of Microfluidic Systems on Soda-Lime Glass.”, Journal of Micromechanics and Microengineering, 11, 726-732, 2001 .
    59.黃錦煌,吳佐群,“輕鬆易學有限元素分析大師”高立圖書有限公司, 2004.
    60.莊達人,“VLSI 製造技術”,高立圖書有限公司, 2002.

    下載圖示 校內:2007-07-12公開
    校外:2008-07-12公開
    QR CODE