| 研究生: |
顏禎恩 Yen, Chen-En |
|---|---|
| 論文名稱: |
含親水/疏水基共聚高分子合成鑑定與其於鋰電池正極漿料之流變學/電化學特性探討 Synthesis and Characterization of Hydrophile/Lyophile -Contained Copolymers and their Rheological / Electrochemical properties as used for Cathode of Lithium Batteries |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 鋰電池 、黏著劑 、導電碳 、正極 、流變性質 |
| 外文關鍵詞: | Lithium batteries, Cathode, Binder, LiFePO4, Rheology |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以溶液聚合法,合成出具有導離子性的均聚物,和將導離子性的單體加入親水基(AM)/疏水基(MA)單體合成無規共聚高分子,分別為P、PcAM、PcMA,利用傅立葉紅外線光譜儀(FT-IR)及核磁共振儀(1H-NMR)證實成功合成和利用凝膠滲透色譜(GPC)確認三種高分子分子量(Mn)分別是347,461Da、377,103Da,376,500Da,並將高分子作為正極黏著劑應用於鋰電池中,探討其正極漿料流變性質和電化學性質,且以商業用黏著劑PVDF進行比較。本研究以傅立葉紅外線光譜儀確認出導離子官能基與正極漿料中的導電碳作用位置;並以迴旋式磁流變儀中的動態頻率掃描觀察到添加PcAM、PcMA的漿料中,網格強度較小;以及利用光學顯微鏡,以及高分子與導電碳形成的薄膜之導電度測試,確認出P及其共聚高分子能使漿料中導電碳的分散較為均勻,其中又以PcAM的分散表現最佳。此外在電化學測試中,PcAM在LiNi1/3Co1/3Mn1/3O2電池放電速率10C電容為70 mAh g-1;在LiFePO4電池中於5C放電速率電容仍有118 mAh g-1,相比PVDF擁有更佳的電化學表現。經由循環充放電測試中,本實驗合成的黏著劑在磷酸鋰鐵電池200圈充放電測試維持庫侖效率99%。
In this study, we synthesized three kinds of polymer, including: P, PcAM, and PcMA. P was homopolymer which was polymerized via ion conducting monomer. PcAM / PcMA were random copolymers which were polymerized via ion conducting monomer incorporated hydrophile (AM) / lyophile (MA) monomer, respectively. The number average molecular weight of P, PcAM and PcMA were 347,461Da, 377,103Da and 376,500Da respectively via GPC. These three polymers were used as binders for cathode of lithium battery. Herein, we discussed rheological properties of electrode slurry and electrochemical performance with various binders. By FT-IR, we found the interaction between conductive agent (SuperP) and our binders, which occurred at conducting group and -NH2 of hydrophile group. Additionally, we found that modified-polymers, PcAM and PcMA, were more well dispersed than P in the N-Methyl-2-Pyrrolidone. By angular frequency sweep test of cathode slurry, we observed that PcAM and PcMA could more effectively disperse percolated structure composed of SuperP via colloidal force, however, commercial Polyvinylidene difluoride (PVDF) was not observed this phenomenon. Also, we used Optical Microscope to observe dispersion of SuperP in different polymer-contained slurry and measured electrical conductivity of polymer/SuperP film to confirm that when using PcAM as binder, the dispersion of SuperP would become better. In electrochemical performance of LFP cathode, PcAM exhibited 118mAh g-1 at 5 C rate compared with 71 mAh g-1 for PVDF. In cycling test, PcAM exhibited better cycling stability. After charging-discharging with 1 C rate 200 times, its capacity retention was 99% compared with 93.7% for PVDF.
1 Tarascon, J.-M. & Armand, M. in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group 171-179 (World Scientific, 2011).
2 Lin, D., Liu, Y. & Cui, Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nature nanotechnology 12, 194 (2017).
3 Chou, S. L., Pan, Y. D., Wang, J. Z., Liu, H. K. & Dou, S. X. Small Things Make a Big Difference: Binder Effects on the Performance of Li and Na Batteries. Phys. Chem. Chem. Phys. 16, 20347-20359, doi:10.1039/c4cp02475c (2014).
4 Zhao, Y. et al. Recent Developments and Understanding of Novel Mixed Transition-Metal Oxides as Anodes in Lithium Ion Batteries. Adv. Energy Mater. 6, 19, doi:10.1002/aenm.201502175 (2016).
5 Lyu, Y. C. et al. Recent Advances in High Energy-Density Cathode Materials for Sodium-Ion Batteries. Sustain. Mater. Technol. 21, 21, doi:10.1016/j.susmat.2019.e00098 (2019).
6 Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 334, 928-935 (2011).
7 Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-Ion Battery Materials: Present and Future. Materials today 18, 252-264 (2015).
8 Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. Journal of the electrochemical society 144, 1188-1194 (1997).
9 Satyavani, T., Kumar, A. S. & Rao, P. S. Methods of Synthesis and Performance Improvement of Lithium Iron Phosphate for High Rate Li-Ion Batteries: A Review. Engineering Science and Technology, an International Journal 19, 178-188 (2016).
10 Andersson, A. & Thomas, J. O. The Source of First-Cycle Capacity Loss in Lifepo4. J. Power Sources 97, 498-502 (2001).
11 Mizushima, K., Jones, P., Wiseman, P. & Goodenough, J. B. Lixcoo2 (0< X<-1): A New Cathode Material for Batteries of High Energy Density. Materials Research Bulletin 15, 783-789 (1980).
12 Schipper, F. et al. Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes I. Nickel-Rich, Linixcoymnzo2. Journal of The Electrochemical Society 164, A6220-A6228 (2017).
13 Choi, Y.-M., Pyun, S.-I. & Moon, S.-I. Effects of Cation Mixing on the Electrochemical Lithium Intercalation Reaction into Porous Li1− Δni1− Ycoyo2 Electrodes. Solid State Ionics 89, 43-52 (1996).
14 Chen, Z. et al. Hierarchical Porous Lini 1/3 Co 1/3 Mn 1/3 O 2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li+ Mobility for Enhanced Electrochemical Performance. Scientific reports 6, 25771 (2016).
15 Kasnatscheew, J. et al. Improving Cycle Life of Layered Lithium Transition Metal Oxide (Limo2) Based Positive Electrodes for Li Ion Batteries by Smart Selection of the Electrochemical Charge Conditions. J. Power Sources 359, 458-467 (2017).
16 Marcinek, M. et al. Electrolytes for Li-Ion Transport–Review. Solid State Ionics 276, 107-126 (2015).
17 Ma, Y., Ma, J. & Cui, G. Small Things Make Big Deal: Powerful Binders of Lithium Batteries and Post-Lithium Batteries. Energy Storage Materials 20, 146-175 (2019).
18 Wei, Z. et al. Study of Sulfonated Polyether Ether Ketone with Pendant Lithiated Fluorinated Sulfonic Groups as Ion Conductive Binder in Lithium-Ion Batteries. J. Power Sources 256, 28-31 (2014).
19 Yabuuchi, N., Kinoshita, Y., Misaki, K., Matsuyama, T. & Komaba, S. Electrochemical Properties of Licoo2 Electrodes with Latex Binders on High-Voltage Exposure. Journal of the electrochemical society 162, A538-A544 (2015).
20 Gong, L., Nguyen, M. H. T. & Oh, E.-S. High Polar Polyacrylonitrile as a Potential Binder for Negative Electrodes in Lithium Ion Batteries. Electrochemistry communications 29, 45-47 (2013).
21 Wu, F. et al. Polyacrylonitrile-Polyvinylidene Fluoride as High-Performance Composite Binder for Layered Li-Rich Oxides. J. Power Sources 359, 226-233 (2017).
22 Lee, J.-H., Paik, U., Hackley, V. A. & Choi, Y.-M. Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and Their Electrochemical Performance for Lithium Batteries. Journal of The Electrochemical Society 152, A1763-A1769 (2005).
23 Liu, W. et al. Nickel‐Rich Layered Lithium Transition‐Metal Oxide for High‐Energy Lithium‐Ion Batteries. Angewandte Chemie International Edition 54, 4440-4457 (2015).
24 Song, J. et al. Interpenetrated Gel Polymer Binder for High‐Performance Silicon Anodes in Lithium‐Ion Batteries. Advanced functional materials 24, 5904-5910 (2014).
25 Komaba, S. et al. Functional Binders for Reversible Lithium Intercalation into Graphite in Propylene Carbonate and Ionic Liquid Media. J. Power Sources 195, 6069-6074 (2010).
26 Cai, Z., Liang, Y., Li, W., Xing, L. & Liao, Y. Preparation and Performances of Lifepo4 Cathode in Aqueous Solvent with Polyacrylic Acid as a Binder. J. Power Sources 189, 547-551 (2009).
27 Rosen, M. J. & Kunjappu, J. T. Surfactants and Interfacial Phenomena. (John Wiley & Sons, 2012).
28 Sato, T. Stabilization of Colloidal Dispersions by Polymer Adsorption. (1980).
29 Napper, D. H. Polymeric Stabilization of Colloidal Dispersions. Vol. 3 (Academic Pr, 1983).
30 Bhattacharjee, S., Elimelech, M. & Borkovec, M. Dlvo Interaction between Colloidal Particles: Beyond Derjaguin’s Approximation. Croatica Chemica Acta 71, 883-903 (1998).
31 Goddard, E. D. & Vincent, B. Polymer Adsorption and Dispersion Stability. (ACS Publications, 1984).
32 Smekens, J. et al. Influence of Electrode Density on the Performance of Li-Ion Batteries: Experimental and Simulation Results. Energies 9, 104 (2016).
33 Ma, F., Fu, Y., Battaglia, V. & Prasher, R. Microrheological Modeling of Lithium Ion Battery Anode Slurry. J. Power Sources 438, 226994 (2019).
34 Guy, D., Lestriez, B., Bouchet, R. & Guyomard, D. Critical Role of Polymeric Binders on the Electronic Transport Properties of Composites Electrode. Journal of The Electrochemical Society 153, A679 (2006).
35 Long, C. M., Nascarella, M. A. & Valberg, P. A. Carbon Black Vs. Black Carbon and Other Airborne Materials Containing Elemental Carbon: Physical and Chemical Distinctions. Environmental Pollution 181, 271-286 (2013).
36 Li, C.-C. & Wang, Y.-W. Importance of Binder Compositions to the Dispersion and Electrochemical Properties of Water-Based Licoo2 Cathodes. J. Power Sources 227, 204-210 (2013).
37 Fongy, C., Gaillot, A.-C., Jouanneau, S., Guyomard, D. & Lestriez, B. Ionic Vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in Lifepo4 Composite Electrodes. Journal of The Electrochemical Society 157, A885-A891 (2010).
38 Porcher, W., Lestriez, B., Jouanneau, S. & Guyomard, D. Design of Aqueous Processed Thick Lifepo4 Composite Electrodes for High-Energy Lithium Battery. Journal of The Electrochemical Society 156, A133-A144 (2009).
39 Lestriez, B., Porcher, W., Jouanneau, S. & Guyomard, D. in Meeting Abstracts. 403-403 (The Electrochemical Society).
40 Tsai, J.-C., Tsai, F.-Y., Tung, C.-A., Hsieh, H.-W. & Li, C.-C. Gelation or Dispersion of Lifepo4 in Water-Based Slurry? J. Power Sources 241, 400-403 (2013).
41 Li, C.-C., Chen, C.-A. & Chen, M.-F. Gelation Mechanism of Organic Additives with Lifepo4 in the Water-Based Cathode Slurries. Ceramics International 43, S765-S770 (2017).
42 Tadokoro, H., Murahashi, S., Yamadera, R. & Kamei, T. I. Infrared Absorption Spectra of Polyacrylonitrile and Deuterated Polyacrylonitriles. Journal of Polymer Science Part A: General Papers 1, 3029-3042 (1963).
43 Loginova, E. V., Mikheev, I. V., Volkov, D. S. & Proskurnin, M. A. Quantification of Copolymer Composition (Methyl Acrylate and Itaconic Acid) in Polyacrylonitrile Carbon-Fiber Precursors by Ftir-Spectroscopy. Analytical Methods 8, 371-380 (2016).
44 Li, X. et al. Atomic Layer Deposition of Solid-State Electrolyte Coated Cathode Materials with Superior High-Voltage Cycling Behavior for Lithium Ion Battery Application. Energy & Environmental Science 7, 768-778 (2014).
45 庄全超 et al. 锂离子电池的电化学阻抗谱分析. 化学进展 22, 1044-1057 (2010).
校內:2025-07-30公開