簡易檢索 / 詳目顯示

研究生: 周意竣
Chou, Yi-Chun
論文名稱: 利用奈米壓印微影術製作金/銀奈米柱陣列的表面增強拉曼散射基板
Gold/Silver-coated Nano-pillar Arrays Fabricated by Nanoimprint lithography as Surface-enhanced Raman Scattering Substrate
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 奈米壓印微影術金屬沉積表面增強拉曼散射
外文關鍵詞: surface enhanced Raman scattering, Nanoimprint lithography, metal deposition
相關次數: 點閱:137下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射(Surface-enhanced raman scattering, SERS)是一項強力的非破壞性檢測工具,從它第一次被發表至今,隨著表面電漿的研究突破與製程技術的進步,其檢測的效果也越來越好。而如何低成本、快速且大量的製作含有高密度的熱點(hot spots)的SERS基板就成了近年研究該領域的重點。
    本研究利用奈米壓印微影術與後續金屬沉積製作金/銀奈米柱陣列(Gold/Silver coated nano-pillar arrays)結構的SERS基板。透過這樣的製程方法,我們將原本使用極紫外光干涉式微影術製作的週期100nm與直徑50 nm的高密度的奈米柱陣列成功且快速的複製出來,後續金屬沉積的方式更是能將圓柱之間的間隙壓縮至20 nm左右。後續透過嚴格耦合波分析法與實際量測,判斷與確認不同形貌與金屬的基板的增益效果與適用的激發光源。
    我們製作的SERS基板在使用633 nm雷射當激發光源時,在偵測R6G水溶液時,最小的莫耳濃度能達到10-9 M,且除了基板整體的均勻度以相對標準偏差呈現能小於10%外,不同樣品之間所偵測到的訊號強度也非常接近,再再證明我們的製程除了能完整的製作高密度的結構外,相較於其他昂貴的製程方法,我們能更快速更簡便的達到優良的SERS偵測效果。

    In this study, we use nanoimprint lithography (NIL) to fabricate silver coated nano-pillar arrays (NPAs) as surface enhanced Raman scattering (SERS) substrate. Such method makes us to duplicate high density NPAs (with 50 nm diameter and 100 nm period) made by other expensive fabrication method easily. With silver deposition, we can reduce the gap between adjacent pillars to 25 nm to produce stronger hot spots. Changing the height of NPAs, the SERS sensing results show that the Rhodamine 6G with the concentration down to 10-9 M can be detected when the height is 50 nm. Besides of low detection limit, our SERS substrates show good uniformity with RSD down to 8.67%. Compared with conventional fabrication method, our approach can have high throughput and reproducibility simultaneously.

    摘要 I Gold/Silver-coated Nano-pillar Arrays Fabricated by Nanoimprint lithography as Surface-enhanced Raman Scattering Substrate II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 文獻回顧 5 2.1 表面增強拉曼散射 5 2.1.1 化學增益機制 5 2.1.2 電場增益機制 6 2.2 表面增強拉曼散射基板 7 2.2.1 Bottom up製程 7 2.2.2 Top down製程 8 2.2.3 週期性結構應用於SERS基板 9 2.3 奈米壓印微影術 10 2.3.1 壓印阻劑 10 2.3.2 壓印模具 11 第三章 研究方法 25 3.1 奈米柱陣列模擬 25 3.2 表面增強拉曼散射基板製作 25 3.2.1 母模清洗與抗沾黏處理 26 3.2.2 全氟聚醚軟模具製作 26 3.2.3 奈米柱陣列壓印 27 3.2.4 金屬薄膜沉積 29 3.3 表面增強拉曼散射量測 31 3.3.1 實驗材料 31 3.3.2 實驗儀器 31 3.3.3 實驗流程 31 第四章 結果與討論 39 4.1 表面增強拉曼散射基板製作 39 4.1.1 阻劑比較與選擇 39 4.1.2 基板形貌確認 40 4.2 表面增強拉曼量測 41 4.2.1 基板增益效果比較 41 4.2.2 基板背景訊號影響 43 第五章 結論與展望 65 5.1. 結論 65 5.2. 未來展望 65 參考文獻 68

    1. F. T. Docherty, P. B. Monaghan, C. J. McHugh, D. Graham, W. E. Smith, and J. M. Cooper, "Simultaneous multianalyte identification of molecular species involved in terrorism using Raman spectroscopy," IEEE Sensors Journal 5, 632-640 (2005).
    2. Y. Jiang, D.-W. Sun, H. Pu, and Q. Wei, "Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues," Trends in Food Science & Technology 75, 10-22 (2018).
    3. Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, and Y. Cui, "Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique," Analyst 139, 5148-5154 (2014).
    4. L. A. Lane, X. Qian, and S. Nie, "SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging," Chem Rev 115, 10489-10529 (2015).
    5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Physical review letters 78, 1667 (1997).
    6. S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, "Electromagnetic theories of surface-enhanced Raman spectroscopy," Chem Soc Rev 46, 4042-4076 (2017).
    7. X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, "Improved SERS Nanoparticles for Direct Detection of Circulating Tumor Cells in the Blood," ACS Appl Mater Interfaces 7, 9965-9971 (2015).
    8. A. Li, L. Tang, D. Song, S. Song, W. Ma, L. Xu, H. Kuang, X. Wu, L. Liu, X. Chen, and C. Xu, "A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1," Nanoscale 8, 1873-1878 (2016).
    9. Y. Liu, Z. Lu, X. Lin, H. Zhu, W. Hasi, M. Zhang, X. Zhao, and X. Lou, "A reproducible gold SERS substrate assisted by silver nanoparticles without using extra aggregation agents," RSC Advances 6, 58387-58393 (2016).
    10. W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, "Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering," Journal of Micromechanics and Microengineering 22, 125007 (2012).
    11. K. Sivashanmugan, J.-D. Liao, J.-W. You, and C.-L. Wu, "Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection," Sensors and Actuators B: Chemical 181, 361-367 (2013).
    12. T.-J. Wang, K.-C. Hsu, Y.-C. Liu, C.-H. Lai, and H.-P. Chiang, "Nanostructured SERS substrates produced by nanosphere lithography and plastic deformation through direct peel-off on soft matter," Journal of Optics 18, 055006 (2016).
    13. X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, "Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography," ACS Appl Mater Interfaces 9, 7710-7716 (2017).
    14. C.-C. Liang, M.-Y. Liao, W.-Y. Chen, T.-C. Cheng, W.-H. Chang, and C.-H. Lin, "Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles," Optics express 19, 4768-4776 (2011).
    15. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters 26, 163-166 (1974).
    16. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of electroanalytical chemistry and interfacial electrochemistry 84, 1-20 (1977).
    17. M. Moskovits, "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals," The Journal of Chemical Physics 69, 4159-4161 (1978).
    18. L. Jensen, C. M. Aikens, and G. C. Schatz, "Electronic structure methods for studying surface-enhanced Raman scattering," Chem Soc Rev 37, 1061-1073 (2008).
    19. J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, "Core-Shell Nanoparticle-Enhanced Raman Spectroscopy," Chem Rev (2017).
    20. Y. Li, J. Li, T. Wang, Z. Zhang, Y. Bai, C. Hao, C. Feng, Y. Ma, and R. Sun, "Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates," Applied Surface Science 443, 138-144 (2018).
    21. X. Liang, B. Liang, Z. Pan, X. Lang, Y. Zhang, G. Wang, P. Yin, and L. Guo, "Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids," Nanoscale 7, 20188-20196 (2015).
    22. Y. Fang, N.-H. Seong, and D. D. Dlott, "Measurement of the distribution of site enhancements in surface-enhanced Raman scattering," Science 321, 388-392 (2008).
    23. N. Guillot and M. L. de la Chapelle, "The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures," Journal of Quantitative Spectroscopy and Radiative Transfer 113, 2321-2333 (2012).
    24. W.-L. Zhai, D.-W. Li, L.-L. Qu, J. S. Fossey, and Y.-T. Long, "Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy," Nanoscale 4, 137-142 (2012).
    25. C. Wang, J. Wang, M. Li, X. Qu, K. Zhang, Z. Rong, R. Xiao, and S. Wang, "A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@ Ag nanoparticles," Analyst 141, 6226-6238 (2016).
    26. Z. Li, K. Zhu, Q. Zhao, and A. Meng, "The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification," Applied Surface Science 377, 23-29 (2016).
    27. E. Jorgenson and A. Ianoul, "Biofunctionalization of Plasmonic Nanoparticles with Short Peptides Monitored by SERS," The Journal of Physical Chemistry B 121, 967-974 (2017).
    28. M. Schutz, D. Steinigeweg, M. Salehi, K. Kompe, and S. Schlucker, "Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy," Chem Commun (Camb) 47, 4216-4218 (2011).
    29. M. G. Caglayan, E. Kasap, D. Cetin, Z. Suludere, and U. Tamer, "Fabrication of SERS active gold nanorods using benzalkonium chloride, and their application to an immunoassay for potato virus X," Microchimica Acta 184, 1059-1067 (2017).
    30. Y. Yang, J. Liu, Z. W. Fu, and D. Qin, "Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity," J Am Chem Soc 136, 8153-8156 (2014).
    31. Y. Zhang, P. Yang, M. A. Habeeb Muhammed, S. K. Alsaiari, B. Moosa, A. Almalik, A. Kumar, E. Ringe, and N. M. Khashab, "Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS," ACS Appl Mater Interfaces 9, 37597-37605 (2017).
    32. J. Shen, Y. Zhu, X. Yang, J. Zong, and C. Li, "Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling," Langmuir 29, 690-695 (2013).
    33. L. Zhang, C. Guan, Y. Wang, and J. Liao, "Highly effective and uniform SERS substrates fabricated by etching multi-layered gold nanoparticle arrays," Nanoscale 8, 5928-5937 (2016).
    34. F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, "Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential," Chemical Physics Letters 446, 339-343 (2007).
    35. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, "Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy," Nano Lett 10, 4952-4955 (2010).
    36. A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, "Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules," ACS nano 8, 7986-7994 (2014).
    37. L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, "Engineering Nanoparticle Cluster Arrays for Bacterial Biosensing: The Role of the Building Block in Multiscale SERS Substrates," Advanced Functional Materials 20, 2619-2628 (2010).
    38. V. Liberman, C. Yilmaz, T. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. Cann, K. Krohn, M. Marchant, and M. Rothschild, "A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates," Advanced Materials 22, 4298-4302 (2010).
    39. L. Feng, R. Ma, Y. Wang, D. Xu, D. Xiao, L. Liu, and N. Lu, "Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering," Nano Research 8, 3715-3724 (2015).
    40. X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, "Ultrasensitive SERS performance in 3D "sunflower-like" nanoarrays decorated with Ag nanoparticles," Nanoscale 9, 3114-3120 (2017).
    41. Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, "Large‐area Ag nanorod array substrates for SERS: AAO template‐assisted fabrication, functionalization, and application in detection PCBs," Journal of Raman Spectroscopy 44, 240-246 (2013).
    42. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 14, 4129-4133 (1996).
    43. W. Zhou, G. Min, J. Zhang, Y. Liu, J. Wang, Y. Zhang, and F. Sun, "Nanoimprint lithography: a processing technique for nanofabrication advancement," Nano-Micro Letters 3, 135-140 (2011).
    44. C.-C. Liang, C.-H. Lin, T.-C. Cheng, J. Shieh, and H.-H. Lin, "Nanoimprinting of Flexible Polycarbonate Sheets with a Flexible Polymer Mold and Application to Superhydrophobic Surfaces," Advanced Materials Interfaces 2, 1500030 (2015).
    45. C. Bencher, J. Y. Cheng, Y.-C. Ting, and S.-L. Shy, "Nano-imprint lithography using poly (methyl methacrylate) (PMMA) and polystyrene (PS) polymers," 9777, 97771H (2016).
    46. M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, "Fabrication of nanostructures using a UV-based imprint technique," Microelectronic Engineering 53, 233-236 (2000).
    47. J. Perumal, T. H. Yoon, H. S. Jang, J. J. Lee, and D. P. Kim, "Adhesion force measurement between the stamp and the resin in ultraviolet nanoimprint lithography--an investigative approach," Nanotechnology 20, 055704 (2009).
    48. Y. Xia and G. M. Whitesides, "Soft lithography," Angewandte Chemie International Edition 37, 550-575 (1998).
    49. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, "Improved pattern transfer in soft lithography using composite stamps," Langmuir 18, 5314-5320 (2002).
    50. H. Schmid and B. Michel, "Siloxane polymers for high-resolution, high-accuracy soft lithography," Macromolecules 33, 3042-3049 (2000).
    51. M. Rahlves, M. Rezem, K. Boroz, S. Schlangen, E. Reithmeier, and B. Roth, "Flexible, fast, and low-cost production process for polymer based diffractive optics," Optics express 23, 3614-3622 (2015).
    52. T. T. Truong, R. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, "Soft lithography using acryloxy perfluoropolyether composite stamps," Langmuir 23, 2898-2905 (2007).
    53. W. Karim, S. A. Tschupp, M. Oezaslan, T. J. Schmidt, J. Gobrecht, J. A. van Bokhoven, and Y. Ekinci, "High-resolution and large-area nanoparticle arrays using EUV interference lithography," Nanoscale 7, 7386-7393 (2015).
    54. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic engineering 83, 1798-1804 (2006).
    55. W.-Y. Chen and C.-H. Lin, "A standing-wave interpretation of plasmon resonance excitation in split-ring resonators," Optics express 18, 14280-14292 (2010).
    56. M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. Ling, M. Keil, and L. Montelius, "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectronic Engineering 61, 441-448 (2002).
    57. X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, "Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes," Nanotechnology 23, 205702 (2012).
    58. Z. Zhuang, X. Shi, Y. Chen, and M. Zuo, "Surface-enhanced Raman scattering of trans-1,2-bis (4-pyridyl)-ethylene on silver by theory calculations," Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 79, 1593-1599 (2011).
    59. X.-F. Zhang, M.-Q. Zou, X.-H. Qi, F. Liu, X.-H. Zhu, and B.-H. Zhao, "Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy," Journal of Raman Spectroscopy 41, 1655-1660 (2010).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE