| 研究生: |
蕭維德 Wei-Te, Hsiao |
|---|---|
| 論文名稱: |
邊界受限束井進水口附近水理試驗研究 Experimental Study of Flow Field near Boundary Limited Intake Pipe |
| 指導教授: |
賴泉基
Lai, Chan-Ji 呂珍謀 Leu, Jan-Mou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系碩士在職專班 Department of Hydraulic & Ocean Engineering (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 進水口 、試驗 、流場 |
| 外文關鍵詞: | Flow field, Experiment, Intake pipe |
| 相關次數: | 點閱:52 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以水工模型試驗探討豎井式進水口在不同流況情形下(包括:浸沒型、臨界浸沒型與自由流型三種)和進水口設置結構物與否之流場特性。試驗模型採用高雄縣阿公店水庫溢洪管原設計之模型,長度比尺為1:40。文中利用聲波都卜勒流速儀(ADV)量測進水口之二維流場,討論在各種試驗條件下之其流量率定曲線、平均流速、等流速分佈和紊流強度分佈特性。
本研究所進行試驗,其出口管徑福祿數FD介於1.10-~2.51之間、浸末水深福祿數Fh介於1.51~3.09之間、出口管徑雷諾數RD介於3.84×104~8.80×104之間及浸沒水深雷諾數Rh介於9.21×103~1.76×105之間。試驗結果顯示自由流型流況時,同溢頂水深無設置結構物的進水口有較大的流量;到達浸沒型流況時,進水口設置結構物與否對流量已無影響。就流場特性而言,相同流況下,流速向量進入角的範圍值隨高程上升而遞減;與無設置結構物之試驗組相較,進水口有設置結構物會導致自由流流況時,流場之流速極大值降低;浸沒流況時,極大值降低現象不明顯,主要原因為壓力流的影響。紊流動能較高區域集中在流場之左上角;不同流況下,以浸沒型流況之紊流動能較高,進水口有無配置結構物,於紊流動能平均值差異不顯著;自由流型流況時,與進水口有結構物配置比較,無配置結構物試驗組之試驗結果可以看到紊流動能極大值降低的趨勢。
Detailed measurements of flows near a vertically flowing downward intake pipe with and without attached structures were presented. Emphasis is given to the effect of attached structures on the flow properties of different flow types. The experiments comprised measurements of rating curves for three flow types, including submerged type, critical submerged type and free-flow type, and detailed measurements of flow characteristics by using an acoustic Doppler velocimeter (ADV) for two flow types, including submerged type and free-flow type.
It is shown that a significant reduction of the intake discharge by the attached structures for critical submerged type and free-flow type. The intake discharge is only dependent on the flow depth rather than the attached structures for the submerged type. With attached structures, the maximum velocity decreases by 20% compared to that without attached structures for free-flow type. The existence of large turbulent kinetic energy is present at upper left area. Flows of submerged type with the highest turbulent kinetic energy, compared to the other two flow types. With attached structures, the maximum turbulent kinetic energy decreases by 18.5% compared to that without attached structures for free-flow type.
1.Odgaard, A. J. 1986. Free-surface air core vortex. J. Hydr. Engrg., ASCE, 112(7), pp. 610–620.
2.Jain, A. K., R. J. Garde, and K. G. Ranga Raju, 1978. Vortex formation at vertical pipe intakes. J. Hydr. Div., ASCE, 104(10), pp. 1429–1445.
3.Melville, B. W., R. Ettema and T. Nakato, 1994. Review of flow problems at water intake pump sumps. EPRI Rep. TR-103474, Res. Proj. RP3456-01 Final Rep., Iowa Inst. of Hydr. Res., University of Iowa, Iowa City, Iowa.
4.Denny, D. F., 1956. An experimental study of air-entraining vortices in pump sumps. Proc., Inst. of Mech. Engrs., London, 170(2), pp. 106–116.
5.Anwar, H. O., 1967. Flow at low head intakes. Water Power, Nov., pp.455–457.
6.Anwar, H. O., 1965. Flow in a free vortex. Water Power, Apr., pp. 153–161.
7.Anwar, H. O., 1968. Prevention of vortices at intakes. Water Power, Oct., pp. 393–401.
8.Hite, J. E. Jr. and Mih, W. C., 1994. Velocity of air-core vortices at hydraulic intakes. J. Hydr. Engrg., ASCE, 120(3), pp. 284–297.
9.Ouick, M. C., 1970. Efficiency of Air-Entraining Vortex Formulation, J. of Hydr. Div., ASCE, vol.96, No.7, pp. 1403–1416.
10.Yildirim, N. and F. Kocabas, 1995. Critical submergence for intakes in open channel flow. J. Hydr. Engrg., ASCE, 121(12), pp. 900–905.
11.Yildirim, N. and F. Kocabas, 1998. Critical submergence for intakes in still-water reservoir. J. Hydr. Engrg., ASCE, 124(1), pp. 103–104.
12.Yildirim, N. and F. Kocabas, 2002. Prediction of critical submergence for an intake pipe.” Journal of Hydraulic Research, IAHR, Vol.40, No.4, pp.507-518.
13.Yildirim, N., F. Kocabas, and S.C. Gülcan, 2000. Flow boundary effects on critical submergence of an intake pipe. Journal of Hydraulic Engineering, ASCE, Vol.126, No.4, pp.288-297.
14.Gulliver, S. J. and A. J. Rindels, 1987. Weak vortices at vertical intakes. J. Hydr. Engrg., ASCE, 113(9), 1101–1116.
15.林仲柏,“協和電廠進水口閘門對於抽水井流場影響之研究”, 國立成功大學水利及海洋工程學系碩士論文,2003。
16.潘志銘,“取水口捲氣渦漩之模擬”,國立台灣大學土木工程研究所碩士論文,1993。