| 研究生: |
黃子佳 Huang, Tzu-Chia |
|---|---|
| 論文名稱: |
利用新穎氮轉移試劑對胺基酸衍生物進行氮轉移反應探討之研究 Novel N-transfer Reagent for Converting α-Amino Acid Derivatives to α-Diazo Compounds |
| 指導教授: |
周鶴軒
Chou, Ho-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 氮轉移試劑 、胺基酸 、重氮化合物 、三氮烯 |
| 外文關鍵詞: | N-transfer reagent, amino acid, diazo compound, triazene |
| 相關次數: | 點閱:102 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究使用新穎氮轉移試劑將十九種人體必需胺基酸的酯類衍生物逕轉換為對應的重氮化合物,試圖為N-H不對稱插入反應合成D型胺基酸提供新的起始物合成方法。透過各個案例間的產率比較,以及對於反應機構的了解,從中可以知道其立體障礙會決定三氮烯中間產物的生成量,進而影響最終重氮化合物的產率。而為了使試劑的應用性提高,於本篇中也提出兩種提高三氮烯生成量的方法,分別以時間及使用量作為改變因素,皆可以針對不同的氨基酸提高產率,不僅能藉此證明氮轉移試劑的應用性,也能間接看出官能基耐受度及部分產物的穩定性。其他相關研究的揭示則為試劑最高合成量的數據,及相關胺基酸起始物的製作方法和流程。
This research was dedicated to converting 19 essential amino acid derivatives to α-diazo compounds, which would provide a new diazo synthesizing protocol. With the deep insight into the mechanism and comparison between the cases, we could conclude that triazene intermediate dominated the yield of diazo. Besides, the formation of triazene would be affected by the hindrance on the α-position.
To afford higher yield and demonstrate more application of this reagent, two methods were mentioned in this research. First, according to Le Chatelier principle, we could use more ammonium salt to enhance the formation of triazene, giving higher yields of diazo compounds. Also, we extended the time of 0℃ condition, ensuring that there is sufficient time for α-amine to react with the reagent before the reagent decomposed. Both of methods not only demonstrated the functional tolerance of N-transfer reaction to the side chain of the amino acids, but also afforded various kinds of diazo compounds in good yields. In addition, the related procedure for synthesizing ammonium salt were also presented in this research.
1. H. B. Vickery and C. L. Schmidt, Chemical Reviews, 1931, 9, 169-318.
2. Y. Shimomura, T. Murakami, N. Nakai, M. Nagasaki and R. A. Harris, The Journal of Nutrition, 2004, 134, 1583S-1587S.
3. (a) E. Kendall, B. McKenzie, W. C. Tobie and G. B. Ayres, Organic Syntheses, 2003, 9, 4-4; (b) K. Drauz, I. Grayson, A. Kleemann, H.-P. Krimmer, W. Leuchtenberger and C. Weckbecker, Wiley-VCH, Weinheim. doi, 2007, 10, a02_057; (c) J. T. Kuethe, D. R. Gauthier, G. L. Beutner and N. Yasuda, The Journal of Organic Chemistry, 2007, 72, 7469-7472.
4. (a) G. Genchi, Amino Acids, 2017, 49, 1521-1533; (b) Y. Kiriyama and H. Nochi, Scientifica, 2016, 2016.
5. K. Harada, Nature, 1963, 200, 1201-1201.
6. B. Xu, S. F. Zhu, X. L. Xie, J. J. Shen and Q. L. Zhou, Angewandte Chemie, 2011, 123, 11685-11688.
7. E. Aller, R. T. Buck, M. J. Drysdale, L. Ferris, D. Haigh, C. J. Moody, N. D. Pearson and J. B. Sanghera, Journal of the Chemical Society, Perkin Transactions 1, 1996, 2879-2884.
8. Y. Zhang and J. Wang, Chemical communications, 2009, 5350-5361.
9. (a) L. Wu and M. Shi, J. Org. Chem., 2010, 75, 2296-2301; (b) N. A. McGrath and R. T. Raines, Chem. Sci., 2012, 3, 3237-3240.
10. N. A. McGrath, K. A. Andersen, A. K. Davis, J. E. Lomax and R. T. Raines, Chemical science, 2015, 6, 752-755.
11. P. A. S. Smith and D. R. Baer, Organic Reactions, 2004, 11, 157-188.
12. W. Kirmse, European Journal of Organic Chemistry, 2002, 2002, 2193-2256.
13. T. Do Minh and O. P. Strausz, Journal of the American Chemical Society, 1970, 92, 1766-1768.
14. D. Becker and D. Birnbaum, The Journal of Organic Chemistry, 1980, 45, 570-578.
15. W. Li, J. Wang, X. Hu, K. Shen, W. Wang, Y. Chu, L. Lin, X. Liu and X. Feng, Journal of the American Chemical Society, 2010, 132, 8532-8533.
16. N. Takasu, Journal, 2011.
17. H. M. Davies, P. R. Bruzinski, D. H. Lake, N. Kong and M. J. Fall, Journal of the American Chemical Society, 1996, 118, 6897-6907.
18. A. Del Zotto, W. Baratta, G. Verardo and P. Rigo, European Journal of Organic Chemistry, 2000, 2000, 2795-2801.
19. (a) V. Arredondo, S. C. Hiew, E. S. Gutman, I. D. U. A. Premachandra and D. L. Van Vranken, Angew. Chem., Int. Ed., 2017, 56, 4156-4159; (b) B. Xu, S. F. Zhu, X. D. Zuo, Z. C. Zhang and Q. L. Zhou, Angewandte Chemie International Edition, 2014, 53, 3913-3916.
20. M. P. Doyle, R. Duffy, M. Ratnikov and L. Zhou, Chemical Reviews, 2010, 110, 704-724.
21. Y. Li, Y.-T. Zhao, T. Zhou, M.-Q. Chen, Y.-P. Li, M.-Y. Huang, Z.-C. Xu, S.-F. Zhu and Q.-L. Zhou, Journal of the American Chemical Society, 2020, 142, 10557-10566.
22. V. Tyagi, R. B. Bonn and R. Fasan, Chemical Science, 2015, 6, 2488-2494.
23. M. P. Doyle, W. Hu and D. J. Timmons, Organic Letters, 2001, 3, 933-935.
24. C. Peng, Y. Wang and J. Wang, Journal of the American Chemical Society, 2008, 130, 1566-1567.
25. T. Curtius, Berichte der deutschen chemischen Gesellschaft, 1883, 16, 2230-2231.
26. S. M. Hecht and J. W. Kozarich, The Journal of Organic Chemistry, 1973, 38, 1821-1824.
27. E. L. Myers and R. T. Raines, Angewandte Chemie International Edition, 2009, 48, 2359-2363.
28. R. J. Baumgarten, Journal of Chemical Education, 1966, 43, 398.
29. R. J. Baumgarten, The Journal of Organic Chemistry, 1967, 32, 484-485.
30. M. Schroen and S. Bräse, Tetrahedron, 2005, 61, 12186-12192.
31. T. Saeki, E.-C. Son and K. Tamao, Bull. Chem. Soc. Jpn., 2005, 78, 1654-1658.
32. M. Förstel, Y. A. Tsegaw, P. Maksyutenko, A. M. Mebel, W. Sander and R. I. Kaiser, ChemPhysChem, 2016, 17, 2726-2735.
33. P. d. M. S. Figueirêdo, J. C. Sampaio Filho, A. d. J. S. Sodré, J. R. de Castro Júnior, I. S. Gonçalves, R. V. Blasques, R. S. Correa, B. A. V. Lima, L. dos Anjos Marques and D. F. Coutinho, Scientific reports, 2021, 11, 1-15.
34. P. Diana, A. Stagno, P. Barraja, A. Carbone, B. Parrino, F. Dall'Acqua, D. Vedaldi, A. Salvador, P. Brun, I. Castagliuolo, O. G. Issinger and G. Cirrincione, ChemMedChem, 2011, 6, 1291-1299.
35. C. Avendaño and J. C. Menéndez, in Medicinal Chemistry of Anticancer Drugs (Second Edition), eds. C. Avendaño and J. C. Menéndez, Elsevier, Boston, 2015, DOI: https://doi.org/10.1016/B978-0-444-62649-3.00005-3, pp. 197-241.
36. (a) E. C. Lee and G. C. Fu, Journal of the American Chemical Society, 2007, 129, 12066-12067; (b) S. Bachmann, D. Fielenbach and K. A. Jørgensen, Organic & biomolecular chemistry, 2004, 2, 3044-3049.
37. I. Szele, M. Tencer and H. Zollinger, Helvetica chimica acta, 1983, 66, 1691-1703.
38. R. Kusaka, D. Zhang, P. S. Walsh, J. R. Gord, B. F. Fisher, S. H. Gellman and T. S. Zwier, J. Phys. Chem. A, 2013, 117, 10847-10862.
39. M. Wang, K. Funabiki and M. Matsui, Dyes and Pigments, 2003, 57, 77-86.
40. I. Coin, R. Dölling, E. Krause, M. Bienert, M. Beyermann, C. D. Sferdean and L. A. Carpino, The Journal of organic chemistry, 2006, 71, 6171-6177.
41. N. Al Soom and T. Thiemann, International Journal of Organic Chemistry, 2016, 6, 1-11.
42. F. Mo, G. Dong, Y. Zhang and J. Wang, Organic & biomolecular chemistry, 2013, 11, 1582-1593.
43. M. T. Molina, C. del Valle, A. M. Escribano, J. Ezquerra and C. Pedregal, Tetrahedron, 1993, 49, 3801-3808.
44. S. N. Greszler and J. S. Johnson, Angew Chem Int Ed Engl, 2009, 48, 3689-3691.
45. A. González, D. Pérez, C. Puig, H. Ryder, J. Sanahuja, L. Solé and J. Bach, Tetrahedron Letters, 2009, 50, 2750-2753.
46. S.-F. Zhu, B. Xu, G.-P. Wang and Q.-L. Zhou, Journal of the American Chemical Society, 2012, 134, 436-442.
47. X.-D. Wang, L.-H. Zhu, P. Liu, X.-Y. Wang, H.-Y. Yuan and Y.-L. Zhao, J. Org. Chem., 2019, 84, 16214-16221.
48. T. Hashimoto, Y. Naganawa and K. Maruoka, J. Am. Chem. Soc., 2011, 133, 8834-8837.
49. C. Matheis, T. Krause, V. Bragoni and L. J. Goossen, Chem. - Eur. J., 2016, 22, 12270-12273.
50. A. Roeske, I. Alt and B. Plietker, ChemCatChem, 2019, 11, 5260-5263.