| 研究生: |
何國蔚 Ho, Kuo-Wei |
|---|---|
| 論文名稱: |
Nd:YVO4雷射的混沌、極端事件與光學雙穩態 Chaos, Extreme Events, and Optical Bistability of a Nd:YVO4 Laser |
| 指導教授: |
魏明達
Wei, Ming-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 混沌 、極端事件 、光學雙穩態 、調制 、固態雷射 |
| 外文關鍵詞: | chaos, extreme events, optical bistability, modulation, solid-state laser |
| 相關次數: | 點閱:155 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們於模擬與實驗中探討了Nd:YVO4(摻釹原釩酸鹽釔)雷射系統中,由共振腔架構(無調制)及泵源調制引發的非線性動態。在近簡併共振腔的架構下,調於特定範圍的腔長及泵源功率,可在無調制訊號的加入下可由基模與橫模競爭泵源的能量引發混沌與極端事件。而在加入調制訊號的情況下,我們將調制頻率調接近與遠離系統的鬆弛振盪頻率時會觀測到不同的動態。當調制頻率調離鬆弛振盪頻率時,混沌與極端事件會在相同且較高閥值的調制深度下產生,而當調制頻率調近鬆弛振盪頻率時,兩者會產生於不同但較低閥值的調制深度。其動態行為亦透過進入混沌的路徑、極端事件百分比率與大於零的李亞普諾夫指數變化討論之。接著,調制頻率與鬆弛振盪頻率的共振可由低百分比調制深度下,輸出與輸入訊號間的振幅比和相位差隨調制頻率的變化觀測之。當調制頻率調於橫模的鬆弛振盪頻率附近時,此共振現象會在近簡併共振腔的架構下引發光學雙穩態,而在簡併共振腔的架構下則不會觀測到雙穩態的現象。
In this thesis, we numerically and experimentally demonstrate the cavity-configuration-dependent (modulation-free) and pump-modulation-induced nonlinear dynamics of a Nd:YVO4(Neodymium-doped yttrium orthovanadate) laser system. Operating at a certain range of pump powers and cavity lengths around the near-mode-degenerate cavity configuration, chaos as well as extreme events (EEs) caused by the mode competition for the pump energy between the fundamental mode and transverse modes can be obtained without the addition of modulation signals. Next, with the addition of modulation signals, we observed different dynamics with the modulation frequency (fm) tuned near and away from the relaxation oscillation frequency (fROF) of the system. Chaos and EEs were obtained at a higher and same threshold of modulation depth (Pm) when fm is tuned away from fROF while chaos and EEs were obtained at lower but distinct thresholds when fm was tuned near fROF. The dynamics were also analyzed through the route towards chaotic regime, evolutions of EE ratio and positive Lyapunov exponents. The resonance between fm and fROF can be observed through the amplitude ratio and phase difference evolution between the output and input signals under a low percentage of Pm with varying fm. The resonance induced optical bistability when fm was tuned around fROF of the transverse modes at near-mode-degenerate cavity configuration, while optical bistability was not observed at mode-degenerate cavity configuration.
1. S. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Perseus Books, 1994).
2. E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the atmospheric sciences 20, 130-141 (1963).
3. E. Pelinovsky, and C. Kharif, Extreme ocean waves (Springer, 2008).
4. S. Aberg, and G. Lindgren, “Height distribution of stochastic Lagrange ocean waves,” Probabilistic engineering mechanics 23, 359-363 (2008).
5. S. El-Labany, W. Moslem, N. El-Bedwehy, R. Sabry, and H. A. El-Razek, “Rogue wave in Titan’s atmosphere,” Astrophysics and Space Science 338, 3-8 (2012).
6. H. Kawamura, T. Hatano, N. Kato, S. Biswas, and B. K. Chakrabarti, “Statistical physics of fracture, friction, and earthquakes,” Reviews of Modern Physics 84, 839 (2012).
7. P. Kjeldsen, “A sudden disaster-in extreme waves,” Rogue Waves 2000, 19-35 (2001).
8. D. Ivanov, Y. I. Khanin, I. Matorin, and A. Pikovsky, “Chaos in a solid-state laser with periodically modulated losses,” Physics Letters A 89, 229-230 (1982).
9. W. Klische, H. Telle, and C. Weiss, “Chaos in a solid-state laser with a periodically modulated pump,” Optics letters 9, 561-563 (1984).
10. M.-D. Wei, C.-H. Chen, H.-H. Wu, D.-Y. Huang, and C.-H. Chen, “Chaos suppression in the transverse mode degeneracy regime of a pump-modulated Nd:YVO4 laser,” Journal of Optics A: Pure and Applied Optics 11, 045504 (2009).
11. M.-D. Wei, C.-C. Hsu, H.-H. Huang, and H.-H. Wu, “Chaos suppression in a Nd:YVO4 laser by biharmonical pump modulation,” Optics express 18, 19977-19982 (2010).
12. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054-1057 (2007).
13. C. Metayer, A. Serres, E. Rosero, W. Barbosa, F. De Aguiar, J. R. Leite, and J. Tredicce, “Extreme events in chaotic lasers with modulated parameter,” Optics express 22, 19850-19859 (2014).
14. C. Bonatto, and A. Endler, “Extreme and superextreme events in a loss-modulated CO2 laser: Nonlinear resonance route and precursors,” Physical Review E 96, 012216 (2017).
15. S. Perrone, R. Vilaseca, J. Zamora-Munt, and C. Masoller, “Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation,” Physical Review A 89, 033804 (2014).
16. D. Choi, M. J. Wishon, J. Barnoud, C. Chang, Y. Bouazizi, A. Locquet, and D. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Physical Review E 93, 042216 (2016).
17. J. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Physical Review E 84, 016604 (2011).
18. S. Randoux, and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Optics letters 37, 500-502 (2012).
19. C. Lecaplain, P. Grelu, J. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Physical review letters 108, 233901 (2012).
20. A. Zaviyalov, O. Egorov, R. Iliew, and F. Lederer, “Rogue waves in mode-locked fiber lasers,” Physical Review A 85, 013828 (2012).
21. S. Kolpakov, H. Kbashi, and S. Sergeyev, “Dynamics of vector rogue waves in a fiber laser with a ring cavity,” Optica 3, 870-875 (2016).
22. L. B. Mélo, G. F. Palacios, P. V. Carelli, L. H. Acioli, J. R. R. Leite, and M. H. de Miranda, “Deterministic chaos in an ytterbium-doped mode-locked fiber laser,” Optics express 26, 13686-13692 (2018).
23. A. A. Hnilo, M. G. Kovalsky, and J. R. Tredicce, “Extreme value events in self pulsing lasers,” in 2011 Fifth Rio De La Plata Workshop on Laser Dynamics and Nonlinear Photonics (IEEE2011), pp. 1-3.
24. C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, “Optical rogue waves in an all-solid-state laser with a saturable absorber: importance of the spatial effects,” Journal of Optics 15, 064004 (2013).
25. C. R. Bonazzola, A. A. Hnilo, M. G. Kovalsky, and J. R. Tredicce, “Features of the extreme events observed in an all-solid-state laser with a saturable absorber,” Physical Review A 92, 053816 (2015).
26. A. Hnilo, M. G. Kovalsky, M. B. Agüero, and J. R. Tredicce, “Characteristics of the extreme events observed in the Kerr-lens mode-locked Ti:sapphire laser,” Physical Review A 91, 013836 (2015).
27. N. M. Granese, A. Lacapmesure, M. B. Agüero, M. G. Kovalsky, A. A. Hnilo, and J. R. Tredicce, “Extreme events and crises observed in an all-solid-state laser with modulation of losses,” Optics letters 41, 3010-3012 (2016).
28. S.-Y. Tsai, C.-P. Chiu, K.-C. Chang, and M.-D. Wei, “Periodic and chaotic dynamics in a passively Q-switched Nd:GdVO4 laser with azimuthal polarization,” Optics letters 41, 1054-1057 (2016).
29. C.-P. Chiu, X.-W. Jiang, K.-C. Chang, and M.-D. Wei, “Chaos and extreme events in an azimuthally polarized Nd:GdVO4 laser with pump modulation,” Optics letters 42, 423-426 (2017).
30. Bonazzola, A. Hnilo, M. Kovalsky, and J. Tredicce, “Extreme events and single-pulse spatial patterns observed in a self-pulsing all-solid-state laser,” Physical Review E 97, 032215 (2018).
31. H. Gibbs, Optical bistability: controlling light with light (Academic Press, 1985).
32. W. Jordan, and P. Smith, Nonlinear ordinary differential equations: an introduction for scientists and engineers (Oxford University Press, 2007).
33. A. H. Nayfeh, and D. T. Mook, Nonlinear oscillations (John Wiley & Sons, 1979).
34. B. van der Pol, “On oscillation hysteresis in a triode generator with two degrees of freedom,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 43, 700-719 (1922).
35. W. E. Lamb Jr, “Theory of an optical maser,” Physical Review 134, A1429 (1964).
36. G. Lasher, “Analysis of a proposed bistable injection laser,” Solid-State Electronics 7, 707-716 (1964).
37. H. Seidel, “Bistable optical circuit using saturable absorber within a resonant cavity,” U.S. Patent 3, 610, 731 (1969).
38. A. Szöke, V. Daneu, J. Goldhar, and N. Kurnit, “Bistable optical element and its applications,” Applied Physics Letters 15, 376-379 (1969).
39. S. McCall, H. Gibbs, G. Churchill, and T. Vеnkatesan, “Optical nonlinearity in the sodium vapour,” Bull. Am. Phys. Soc 20, 636-641 (1975).
40. R. Bonifacio, M. Gronchi, and L. Lugiato, “Photon statistics of a bistable absorber,” Physical Review A 18, 2266 (1978).
41. Bernabeu, P. Mejias, and R. Martínez-Herrer, “Optical bistability: Towards all-optical devices,” Physica Scripta 36, 312 (1987).
42. S. Ruschin, and S. Bauer, “Bistability, hysteresis and critical behavior of a CO2 laser, with SF6 intracavity as a saturable absorber,” Chemical Physics Letters 66, 100-103 (1979).
43. A. Jacques, and P. Glorieux, “Observation of bistability in a CO2 laser exhibiting passive Q-switching,” Optics Communications 40, 455-460 (1982).
44. H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE Journal of Selected Topics in Quantum Electronics 3, 1254-1270 (1997).
45. M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technology Letters 17, 968-970 (2005).
46. L. Luo, T. Tee, and P. Chu, “Bistability of erbium-doped fiber laser,” Optics communications 146, 151-157 (1998).
47. J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelengthswitching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Applied Physics B 85, 545-548 (2006).
48. C. Lee, and H. Osada, “Observation of optical bistability due to resonator configuration transition,” Optics letters 10, 232-234 (1985).
49. J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, “Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser,” Optics express 14, 12183-12187 (2006).
50. X. Zhang, and Y. Wang, “Optical bistability effects in a Tm, Ho:YLF laser at room temperature,” Optics letters 32, 2333-2335 (2007).
51. J. Liu, H. Zhang, X. Mateos, W. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Optics letters 33, 1810-1812 (2008).
52. M.-D. Wei, D.-Y. Huang, C.-C. Hsu, A.-K. Chang, and J.-H. Lin, “Bistability and spatial hysteresis in an Nd:GdVO4 laser with an intracavity twisted-nematic liquid crystal,” Applied Physics B 105, 323 (2011).
53. K.-G. Hong, S.-T. Lin, and M.-D. Wei, “Polarization bistability associated with 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions in Nd:YVO4 laser with intra-cavity periodically poled lithium niobate Bragg modulator,” Optics express 23, 17979-17987 (2015).
54. J. T. Verdeyen, Laser electronics (Prentice Hall, 1995).
55. M.-D. Wei, and W.-F. Hsieh, “Cavity-configuration-dependent nonlinear dynamics in Kerr-lens mode-locked lasers,” JOSA B 17, 1335-1342 (2000).
56. A. G. Fox, and T. Li, “Resonant modes in a maser interferometer,” Bell System Technical Journal 40, 453-488 (1961).
57. Hollinger, and C. Jung, “Single-longitudinal-mode laser as a discrete dynamical system,” JOSA B 2, 218-225 (1985).
58. Y.-J. Cheng, P. L. Mussche, and A. Siegman, “Cavity decay rate and relaxation oscillation frequency in unconventional laser cavities,” IEEE journal of quantum electronics 31, 391-398 (1995).
59. C.-H. Chen, M.-D. Wei, and W.-F. Hsieh, “Beam-propagation-dominant instability in an axially pumped solid-state laser near degenerate resonator configurations,” JOSA B 18, 1076-1083 (2001).
60. J. K. Jabczyński, J. Kwiatkowski, and W. Zendzian, “Modeling of beam width in passively Q-switched end-pumped lasers,” Optics express 11, 552-559 (2003).
61. M.-D. Wei, C.-L. Liu, and Y.-L. Lu, “Chaos synchronization in solid-state lasers with cavity-configuration-dependent instabilities,” Journal of Optics A: Pure and Applied Optics 9, 1034 (2007).
62. M. Kovalsky, and A. Hnilo, “Chaos in the pulse spacing of passive Q-switched allsolidstate lasers,” Optics letters 35, 3498-3500 (2010).
63. M.-D. Wei, and C.-C. Hsu, “Numerical study of nonlinear dynamics in a pumpmodulation Nd:YVO4 laser with humped modulation profile,” Optics Communications 285, 1366-1370 (2012).