| 研究生: |
郭羿岑 Yi-Tsen-Kuo, |
|---|---|
| 論文名稱: |
週期成長模式之多代擴散模型發展 Growth-Cycle Decomposition Multi-Generational Diffusion Model |
| 指導教授: |
耿伯文
Victor-B-Kreng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 動態隨機存取記憶體 、灰色系統理論 、週期成長擴散 、多代擴散 |
| 外文關鍵詞: | DRAM, Grey Theory, Growth-Cycle Decomposition Diffusion Model, Multi-Generational Diffusion |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銷售預測是企業經營運作的重要工作之一,因為需求的變化與波動,使得採購作業、庫存管理、生產排程等企業內活動均受影響。透過精確的預測來掌握需求,以達到降低庫存成本、減少人力需求、提高顧客服務品質與競爭力的目的。
本研究以兩種不同的方法分別預測DRAM產業的銷售量,一種是以週期成長多代擴散模式去預測各世代的DRAM銷售量,由於DRAM產業深受價格以及景氣循環的影響,一般多代預測模式不一定有考慮景氣循環的變數,因此本研究以加入價格及GDP的變數,欲了解本模式在加入此兩變數後,是否對DRAM產業預測有貢獻,以往看到許多研究皆以 Norton與Bass (1987)中的多代模式去預測DRAM多代發展的變化,本文亦與之做比較。第二種是應用灰色預測去預測全球DRAM銷售量,灰色預測方法中以其容易處理非線性問題、少數據、小樣本的預測特性,針對DRAM產業近十年來每年之銷售量,建構一個合適的銷售量的預測模式,以期改善企業的管理效率,並做為管理者決策的參考,提高管理上的競爭力。
本研究以全球DRAM作為實證對象,從實例驗證結果發現,灰色預測對於DRAM
預測有很好的準確度,並且只使用少組數的歷史資料即可得到高準確度的預測值。而週期成長多代擴散模式在加入價格、GDP兩個變數後確實對模型有貢獻性。
Sales forecasting is one of the important events to every company. Changing in customers’ requirements and environment are related to procurement operations, inventory
management, production scheduling and other enterprise activities. Accurate demand forecasts can achieve lower inventory costs, reduce manpower requirements, improve
much customer service quality and business competitiveness.
In this study, there are two different methods to forecast sales of DRAM industry. The first is Growth-Cycle Decomposition Multi-Generational Diffusion Model that is to
forecast multi-generational DRAM sales. Because DRAM industry is easily affected by business cycle and price, General Multi-Generational Diffusion Model do not consider the business cycle variables. In this study, I use both price and GDP variables, wondering whether these variables are meaningful to the whole model after these two variables added. Norton and Bass (1987) model are extensively cited by many researchers. This study is
also compared with Norton and Bass (1987) model. The second method is the grey theory,used to forecast global DRAM sales. Grey Theory method can easily deal with nonlinear
problems, less data, small samples of forecasting. This study uses annual sales data of DRAM industry over the decade. Construct an appropriate sales forecasting model to
improve the efficiency of enterprise management and decision-making as a reference for managers to improve the competitiveness of management. In this study, use the global DRAM as an empirical subject. Results show that Grey
Theory for DRAM has good accuracy, and using only a small number of historical data set can predict well. Moreover, Growth-Cycle Decomposition Multi-Generational Diffusion
Model joins price and GDP variables together which also does contribute to the whole model.
Key
參考文獻
Bass, F. M. (1969). A New Product Growth for Model Consumer Durables.
Management Science, 15(5), 215-227.
Bass, P. I., & Bass, F. M. (2001). Diffusion of technology generations: A model of
adoption and repeat sales. Frisco, TX.: Bass Economics, Inc.
Ben Maalla, E. M., & Kunsch, P. L. (2008). Simulation of micro-CHP diffusion by
means of System Dynamics. Energy Policy, 36(7), 2308-2319.
Camacho, M., & Perez-Quiros, G. (2002). This Is What the Leading Indicators Lead.
Journal of Applied Econometrics, 17(1), 61-80.
Chanda, U., & Bardhan, A. K. (2008). Modelling innovation and imitation sales of
products with multiple technological generations. The Journal of High
Technology Management Research, 18(2), 173-190.
Chanda, U., & Bardhan, A. K. (2008). Modelling innovation and imitation sales of
products with multiple technological generations. The Journal of High
Technology Management Research, 18(2), 173-190.
Deng, J. L. (1982). Control problems of grey systems. Systems Control Letters. Vo,5.
pps, 288-294..
Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological
change. Technological Forecasting and Social Change, 3, 75-88.
Fok, D., & Franses, P. H. (2007). Modeling the diffusion of scientific publications.
Journal of Econometrics, 139(2), 376-390.
Fourt, L. A., & Woodlock, J. W. (1960). Early Prediction of Market Success for New
Grocery Products. The Journal of Marketing, 25(2), 31-38.
Guidolin, M., & Mortarino, C. (2010). Cross-country diffusion of photovoltaic
systems: Modelling choices and forecasts for national adoption patterns.
Technological Forecasting and Social Change, 77(2), 279-296.
Joo, Y. J., & Jun, D. B. (1996). Growth-cycle decomposition diffusion model.
Marketing Letters, 7(3), 207-214.
Jun, D. B., & Park, Y. S. (1999). A Choice-Based Diffusion Model for Multiple
Generations of Products - A Review and Directions for Research.
Technological Forecasting and Social Change, 61, 45-58.
Kim, N., Chang, D. R., & Shocker, A. D. (2000). Modeling intercategory and
generational dynamics for a growing information technology industry.
Management Science, 46(4), 496-512.
Mahajan, V., Muller, E., & Bass, F. M. (1990). New Product Diffusion Models in
Marketing: A Review and Directions for Research. The Journal of Marketing,
54(1), 1-26.
Mahajan, V., & Peterson, R. A. (1979). Integrating time and space in technological
substitution models. Technological Forecasting and Social Change, 14(3),
231-241.
Makridakis, Spyros, (1993). Accuracy measures: Theoretical and practical concerns.
International Journal of Forecasting, 9, 527-529.
Mansfield, E. (1961). Technical Change and the Rate of Imitation. Econometrica,
29(4), 741-766.
Norton, J. A., & Bass, F. M. (1987). A Diffusion Theory Model of Adoption and
Substitution for Successive Generations of High-Technology Products.
Management Science, 33(9), 1069-1086.
88
Norton, J. A., & Bass, F. M. (1992). Evolution of Technological Generations: The
Law of Capture. Sloan Management Review; Winter 1992; 33, 2;
ABI/INFORM Global page66.
Rao, K. U., & Kishore, V. V. N. (2010). A review of technology diffusion models
with special reference to renewable energy technologies.Renewable and
Sustainable Energy Reviews, 14(3), 1070-1078.
Rogers, E. M. (1983). Diffusion of innovations. . New York: Free Press., 3rd ed.
Sohn, S. Y., & Lim, M. (2008). The effect of forecasting and information sharing in
SCM for multi-generation products. European Journal of Operational
Research, 186(1), 276-287.
Speece, M. W., & Maclachlan, D. L. (1995). Application of a Multi-Generation
Diffusion Model to Milk Container Technology Technological
Forecasting and Social Change, 49(3), 281-295.
Speece, M. W., & Maclachlan, D. L. (1995). Application of a multi-generation
diffusion model to milk container technology
Technological forecasting and social change. New York NY. Vol. 49, no. 3, pp.
281-295.
Usha Rao, K., & Kishore, V. V. N. (2009). Wind power technology diffusion analysis
in selected states of India. Renewable Energy, 34(4), 983-988.
Wang, F.-K., & Chang, K.-K. (2009). Modified diffusion model with multiple
products using a hybrid GA approach. Expert Systems with Applications,
36(10), 12613-12620.
溫坤禮、張簡士琨、葉鎮愷、王建文、林慧珊. (2007). MATLAB 在灰色系統理論
的應用: 全華科技圖書公司.
溫坤禮、黃宜豐、陳繁雄、李元秉、連志峰、賴家瑞. (2002). 灰預測原理與應用:
全華科技圖書股份有限公司。.
鄧聚龍. (1985). 灰色控制系統. 中國武漢: 華中理工大學出版社.
中華民國經濟部工業局,2009 。
http://cdnet.stpi.org.tw/techroom/policy/2009/policy_09_102.htm
http://www.isuppli.com/Pages/Home.aspx