| 研究生: |
郭俊廷 Kuo, Chun-Ting |
|---|---|
| 論文名稱: |
半胱胺修飾之表面增強拉曼散射基板作為酸鹼值感測器與其應用 Cysteamine-Modified Nanoplasmonic SERS Substrates for pH Sensing and Its Application |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 銀奈米立方體 、表面增強拉曼散射 、酸鹼值感測器 、半胱胺 、尿液 、亞甲藍 |
| 外文關鍵詞: | silver nanocubes, surface-enhanced Raman scattering (SERS), pH sensor, cysteamine, urine, methylene blue |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將探討利用半胱胺(cysteamine)修飾之SERS基板作為酸鹼值感測器的可能性,並應用於尿液的拉曼檢測。
本研究包含兩個部分,第一部分製備銀奈米立方體顆粒與銀基板,藉由自組裝單分子層技術將銀奈米粒方體自組裝於銀金屬薄膜上,利用半胱胺修飾SERS基板後,接續進行相關的性質分析。由紫外光/可見光光譜分析得知以不同半胱胺濃度修飾基板表面後,會使SERS基板的表面電漿共振(SPR)波長產生位移,影響SERS基板的拉曼增顯能力。藉由分析SERS基板拉曼訊號的特徵峰變化,得到拉曼訊號與酸鹼值變化的關係,預期能作為有效的酸鹼值感測器。
第二部分將製備完成的半胱胺修飾之SERS基板應用於尿液的酸鹼值測定,由拉曼實驗所得到的酸鹼值與酸鹼度計得到的酸鹼值誤差範圍在3%以內,代表半胱胺修飾之SERS基板可做為有效的酸鹼值感測器。最後利用低濃度亞甲藍(methylene blue)的拉曼量測得知半胱胺修飾之SERS基板的偵測極限,約為10-10M。
Surface-enhanced Raman scattering (SERS) substrates with massive hotspots on a large scale from nanogaps can be fabricated by self-assembling silver nanocubes on massed silver mirror via 1, 2-ethanedithiol monolayer as linkage. By using cysteamine to modify the SERS substrate, it can successfully reflect the pH of complex environment and be proven as a pH sensor in a real biological environment such as human urine. By analyzing the variation of Raman signals of cysteamine-modified nanoplasmonic SERS substrate, it is easy to get a good and wide linear response to pH ranging from 3.47 to 10.38. It is found that the results obtained by the SERS analysis are similar (<3%) to pH meter, and the relative standard deviation (RSD) values are below 4.2%. The results of UV-Vis analysis show that the modifications of cysteamine will shift the surface plasmon resonance (SPR) wavelength from a longer one to a shorter one. Therefore, there exists a specific concentration of cysteamine to modify the SERS substrates which can make the UV-Vis absoption peak properly match to 633nm Raman laser thus greatly enhance its SERS signals. Raman results prove the good performance of cysteamine-modified nanoplasmonic SERS substrate by detecting 10-10 M methylene blue solution with high sensitivity. This work not only emerges a rapid, easy, and low-cost way to fabricate nanostructured SERS substrates but also largely expands its functionality.
1.Raman, C.V. and K.S. Krishnan, A new type of secondary radiation. Nature, 1928. 121: p. 501-502.
2.McQuillan, A.J., The discovery of surface-enhanced Raman scattering. Notes and Records of the Royal Society, 2009. 63(1): p. 105-109.
3.Kneipp, K., et al., Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews, 1999. 99(10): p. 2957-2976.
4.Hutchinson, K., A. McQuillan, and R. Hester, Non-aqueous sers: Pyridine in N, N'-dimethylformamide solution at a silver electrode. Chemical Physics Letters, 1983. 98(1): p. 27-31.
5.Creighton, J., The resonance Raman contribution to SERS: Pyridine on copper or silver in aqueous media. Surface Science, 1986. 173(2-3): p. 665-672.
6.Van Duyne, R.P., Laser excitation of Raman scattering from adsorbed molecules on electrode surfaces. Chemical and Biochemical Applications of Lasers, 1979. 4: p. 101.
7.Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 1977. 99(15): p. 5215-5217.
8.Lombardi, J.R., et al., Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. The Journal of Chemical Physics, 1986. 84(8): p. 4174-4180.
9.Kerker, M., D.-S. Wang, and H. Chew, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Applied Optics, 1980. 19(19): p. 3373-3388.
10.Wang, D.-S. and M. Kerker, Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Physical Review B, 1981. 24(4): p. 1777.
11.Marcus, R., Chemical and electrochemical electron-transfer theory. Annual Review of Physical Chemistry, 1964. 15(1): p. 155-196.
12.Stockman, M.I., et al., Giant fluctuations of local optical fields in fractal clusters. Physical Review Letters, 1994. 72(15): p. 2486.
13.Bergman, D.J. and M.I. Stockman, Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Physical Review Letters, 2003. 90(2): p. 027402.
14.Rycenga, M., et al., Generation of Hot Spots with Silver Nanocubes for Single‐Molecule Detection by Surface‐Enhanced Raman Scattering. Angewandte Chemie, 2011. 123(24): p. 5587-5591.
15.Rycenga, M., et al., Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. The Journal of Physical Chemistry Letters, 2010. 1(4): p. 696-703.
16.Xiong, Y. and Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures: The Case of Palladium. Advanced Materials, 2007. 19(20): p. 3385-3391.
17.Xia, Y., Understanding the SERS Effects of Single Silver Nanoparticles and Their Dimers, One at a Time. J. Phys. Chem. Lett., 2010. 1.
18.Kottmann, J., et al., Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B, 2001. 64(23).
19.Zhao, Y., Y. Jiang, and Y. Fang, Spectroscopy property of Ag nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006. 65(5): p. 1003-1006.
20.Sant'Ana, A.C., et al., Size-dependent SERS enhancement of colloidal silver nanoplates: the case of 2-amino-5-nitropyridine. Journal of Raman Spectroscopy, 2009. 40(2): p. 183-190.
21.Samal, A.K., et al., Size Tunable Au@Ag Core–Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties. Langmuir, 2013. 29(48): p. 15076-15082.
22.Uzayisenga, V., et al., Synthesis, Characterization, and 3D-FDTD Simulation of Ag@SiO2Nanoparticles for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Langmuir, 2012. 28(24): p. 9140-9146.
23.Ulman, A., Formation and structure of self-assembled monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554.
24.劉浩志, 自組裝單分子層材料在關鍵尺寸原子力顯微鏡探針表面交互作用之研究. 2009.
25.Kessel, C.R. and S. Granick, Formation and characterization of a highly ordered and well-anchored alkylsilane monolayer on mica by self-assembly. Langmuir, 1991. 7(3): p. 532-538.
26.Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. 2013: Academic press.
27.Aswal, D., et al., Self assembled monolayers on silicon for molecular electronics. Analytica Chimica Acta, 2006. 568(1): p. 84-108.
28.Lin, Y.-C., et al., Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups. Journal of Colloid and Interface Science, 2009. 340(1): p. 126-130.
29.Wang, M.-C., et al., Modification of aliphatic monomolecular films by free radical dominant plasma: the effect of the alkyl chain length and the substrate. Langmuir, 2003. 19(23): p. 9774-9780.
30.Liao, J., et al., Zharnikov M and Grunze M. The Journal of Physical Chemistry Letters, 2002. 2002: p. 106.
31.; Available from: https://en.wikipedia.org/wiki/Self-assembled_monolayer.
32.Bigelow, W., D. Pickett, and W. Zisman, Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science, 1946. 1(6): p. 513-538.
33.Nuzzo, R.G. and D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983. 105(13): p. 4481-4483.
34.Xia, Y. and G.M. Whitesides, Soft lithography. Annual Review of Materials Science, 1998. 28(1): p. 153-184.
35.Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170.
36.Li, Z., S.-C. Chang, and R.S. Williams, Self-assembly of alkanethiol molecules onto platinum and platinum oxide surfaces. Langmuir, 2003. 19(17): p. 6744-6749.
37.Rieley, H., et al., Surface adsorption structures in 1-octanethiol self-assembled on Cu (111). Surface Science, 1997. 392(1-3): p. 143-152.
38.Speller, S., et al., Surface structures of S on Pd (111). Surface Science, 1999. 441(1): p. 107-116.
39.Love, J.C., et al., Formation and structure of self-assembled monolayers of alkanethiolates on palladium. Journal of the American Chemical Society, 2003. 125(9): p. 2597-2609.
40.Muskal, N. and D. Mandler, Thiol self-assembled monolayers on mercury surfaces: the adsorption and electrochemistry of ω-mercaptoalkanoic acids. Electrochimica Acta, 1999. 45(4): p. 537-548.
41.Poirier, G.E., Characterization of organosulfur molecular monolayers on Au (111) using scanning tunneling microscopy. Chemical Reviews, 1997. 97(4): p. 1117-1128.
42.Fenter, P., et al., Structure of octadecyl thiol self-assembled on the silver (111) surface: an incommensurate monolayer. Langmuir, 1991. 7(10): p. 2013-2016.
43.Gooding, J.J., et al., Self‐assembled monolayers into the 21st century: recent advances and applications. Electroanalysis, 2003. 15(2): p. 81-96.
44.Turyan, I. and D. Mandler, Self-assembled monolayers in electroanalytical chemistry: Application of. omega.-mercaptocarboxylic acid monolayers for electrochemical determination of ultralow levels of cadmium (II). Analytical Chemistry, 1994. 66(1): p. 58-63.
45.Turyan, I. and D. Mandler, Selective determination of Cr (VI) by a self-assembled monolayer-based electrode. Analytical Chemistry, 1997. 69(5): p. 894-897.
46.Yang, W., J.J. Gooding, and D.B. Hibbert, Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper. Journal of Electroanalytical Chemistry, 2001. 516(1): p. 10-16.
47.Katz, E., A.F. Bückmann, and I. Willner, Self-powered enzyme-based biosensors. Journal of the American Chemical Society, 2001. 123(43): p. 10752-10753.
48.Mirsky, V.M., M. Riepl, and O.S. Wolfbeis, Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997. 12(9): p. 977-989.
49.Umek, R.M., et al., Electronic detection of nucleic acids: a versatile platform for molecular diagnostics. The Journal of Molecular Diagnostics, 2001. 3(2): p. 74-84.
50.Kneipp, J., et al., One-and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Letters, 2007. 7(9): p. 2819-2823.
51.Pallaoro, A., et al., Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. Small, 2010. 6(5): p. 618-622.
52.Jensen, R.A., J. Sherin, and S.R. Emory, Single nanoparticle based optical pH probe. Applied Spectroscopy, 2007. 61(8): p. 832-838.
53.Wang, Z., et al., Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. Biosensors and Bioelectronics, 2008. 23(6): p. 886-891.
54.Zong, S., et al., Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. Analytical Chemistry, 2011. 83(11): p. 4178-4183.
55.Yang, T., et al., Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing. ACS Applied Materials & Interfaces, 2016. 8(23): p. 14802-14811.
56.Ando, R.A., et al., Chromic materials for responsive surface-enhanced resonance Raman scattering systems: a nanometric pH sensor. Physical Chemistry Chemical Physics, 2009. 11(34): p. 7505-7508.
57.Huang, Q., et al., pH sensor based on boron nitride nanotubes. Nanotechnology, 2009. 20(41): p. 415501.
58.Cheng, S.-C. and T.-C. Wen, Robust SERS substrates with massive nanogaps derived from silver nanocubes self-assembled on massed silver mirror via 1,2-ethanedithiol monolayer as linkage and ultra-thin spacer. Materials Chemistry and Physics, 2014. 143(3): p. 1331-1337.
59.Skrabalak, S.E., et al., Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols, 2007. 2(9): p. 2182-2190.
60.Wang, Y., et al., Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. Journal of the American Chemical Society, 2013. 135(5): p. 1941-1951.
61.Cheng, S.-C. and T.-C. Wen, Robust SERS substrates with massive nanogaps derived from silver nanocubes self-assembled on massed silver mirror via 1, 2-ethanedithiol monolayer as linkage and ultra-thin spacer. Materials Chemistry and Physics, 2014. 143(3): p. 1331-1337.
62.Li, C., et al., Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control, 2016. 65: p. 99-105.
63.Kundan, S., et al., Anti-fouling Nanoplasmonic SERS Substrate for Trapping and Releasing Cationic Fluorescent Tag from Human Blood Solution. Nanoscale, 2017.
校內:2021-07-30公開