| 研究生: |
許永泰 Hsu, Yung-Tai |
|---|---|
| 論文名稱: |
具電阻響應特性的多氣體吸附綠色高分子薄膜開發與性能分析 Development and Performance Analysis of a Green Polymer Film with Multi-Gas Adsorption Capability and Resistive Response Characteristics |
| 指導教授: |
施士塵
Shi, Shih-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 氣體吸附 、比表面積 、氣體感測器 、綠色材料 |
| 外文關鍵詞: | as adsorption, porous silica, m-phenylenediamine, sulfur dioxide, formaldehyde, conductive film, green materials |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發一種具備多氣體吸附能力的綠色高分子薄膜,藉由在高分子結構中引入多重官能性吸附點位,以拓展其在空氣污染控制與氣體感測領域的應用潛力。傳統上,本實驗室所設計之薄膜僅對二氧化碳(CO₂)具備吸附能力,為提升其功能性,本研究導入間苯二胺(m-phenylenediamine)修飾策略,成功引入胺基官能團,賦予材料與其他酸性有害氣體—特別是二氧化硫(SO₂)與甲醛(HCHO)—的專一性吸附能力。
藉由傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy)驗證修飾後薄膜表面之官能基存在,並保有對CO₂的原始吸附能力。進一步以石英晶體微量天平(Quartz Crystal Microbalance)量測間苯二胺對SO₂與HCHO的吸附能力,顯示其對SO₂具有高度親和性。熱重分析(Thermogravimetric analysis)結果指出,將間苯二胺導入高分子薄膜後,整體氣體吸附效率較原始材料提高約490%。此外,於SO₂吸附過程中觀察到薄膜電阻值明顯下降,從原始的5 MΩ降至0.1 MΩ,顯示氣體分子與胺基交互作用造成導電性顯著變化,驗證其作為氣體感測材料的潛力。
本研究成果展示了透過官能基修飾可有效提升綠色高分子薄膜之多氣體吸附與電性響應能力,並證明此材料具有應用於智慧型氣體感測、工業廢氣處理與環境監控領域的潛力,為永續材料與污染防治技術的整合應用提供嶄新方向。
This study aims to develop an eco-friendly polymer film that exhibits both multi-gas adsorption capability and resistive response characteristics, expanding its potential applications in air pollution control and gas sensing. Polyvinyl alcohol (PVA) was selected as the polymer matrix, while porous silica (SiO₂) served as a high-surface-area support to enhance gas–solid interactions. The film was further functionalized with m-phenylenediamine (MPDA) to introduce amine (–NH₂) groups as active adsorption sites. Through this modification, the film not only retained its original adsorption capacity for carbon dioxide (CO₂) but also gained selective adsorption abilities toward acidic gases such as sulfur dioxide (SO₂) and formaldehyde (HCHO).
Fourier-transform infrared spectroscopy (FTIR) confirmed the successful incorporation of amine functional groups, and the gas adsorption performance was quantitatively evaluated using a quartz crystal microbalance (QCM). The results revealed that MPDA exhibited the highest adsorption capacity for SO₂ (76.5 mg g⁻¹), significantly greater than that for CO₂ (32.1 mg g⁻¹), while the adsorption capacity for HCHO reached 89.3 mg g⁻¹. When MPDA was integrated into the PVA/SiO₂ composite structure, the overall gas adsorption efficiency increased remarkably — by approximately 490% for SO₂ and nearly threefold for HCHO — demonstrating that the high specific surface area effectively promotes the interaction between gas molecules and active sites.
Electrical measurements further showed that, after SO₂ adsorption, the film’s resistance decreased sharply from 5 MΩ to 0.1 MΩ, indicating the formation of ion-conducting pathways (HSO₃⁻, SO₃²⁻) within the polymer network. This pronounced change in electrical resistance verifies the film’s potential for gas-sensing applications, enabling real-time detection of SO₂ concentrations through resistance variation.
In summary, a green, multifunctional polymer composite film with enhanced gas adsorption and resistive response properties was successfully developed. Featuring a simple synthesis process, low cost, and high sensitivity, the proposed material holds strong promise for applications in intelligent gas sensors, industrial flue-gas treatment, and environmental monitoring, highlighting its contribution to sustainable materials science and environmental protection technologies.
1. Cleveland, C. Global anthropogenic sulfur dioxide emissions, 1750-2022. https://visualizingenergy.org/global-anthropogenic-sulfur-dioxide-emissions-1750-2022/
2. Smith, S.J. Anthropogenic sulfur dioxide emissions: 1850–2005. 2011.
3. Zhang, Y.; Li, J.; Tan, J.; Li, W.; Singh, B.P.; Yang, X.; Bolan, N.; Chen, X.; Xu, S.; Bao, Y. An overview of the direct and indirect effects of acid rain on plants: Relationships among acid rain, soil, microorganisms, and plants. Science of the Total Environment 2023, 873, 162388.
4. Samset, B.H.; Sand, M.; Smith, C.J.; Bauer, S.E.; Forster, P.M.; Fuglestvedt, J.S.; Osprey, S.; Schleussner, C.F. Climate impacts from a removal of anthropogenic aerosol emissions. Geophysical Research Letters 2018, 45, 1020-1029.
5. Anderson, D.C.; Nicely, J.M.; Wolfe, G.M.; Hanisco, T.F.; Salawitch, R.J.; Canty, T.P.; Dickerson, R.R.; Apel, E.C.; Baidar, S.; Bannan, T.J. Formaldehyde in the tropical western pacific: Chemical sources and sinks, convective transport, and representation in cam‐chem and the ccmi models. Journal of Geophysical Research: Atmospheres 2017, 122, 11,201-211,226.
6. Who guidelines for indoor air quality: Selected pollutants. https://www.who.int/publications/i/item/9789289002134?utm_source=chatgpt.com
7. Liu, S.; Liu, W.; Jiao, F.; Qin, W.; Yang, C. Production and resource utilization of flue gas desulfurized gypsum in china-a review. Environmental Pollution 2021, 288, 117799.
8. Dhawale, P.; Gadhave, R.V. Indoor formaldehyde removal techniques through paints. Green and Sustainable Chemistry 2024, 14, 1-15.
9. Sorrels, J.L. So2 and acid gas controls. 2021.
10. Gutiérrez Ortiz, F.; Vidal, F.; Ollero, P.; Salvador, L.; Cortés, V.; Gimenez, A. Pilot-plant technical assessment of wet flue gas desulfurization using limestone. Industrial & Engineering Chemistry Research 2006, 45, 1466-1477.
11. Siikamäki, J.; Burtraw, D.; Maher, J.; Munnings, C. The us environmental protection agency’s acid rain program. Resources for the Future Backgrounder 2012.
12. Wang, K.-Q.; Gao, X.-M.; Lin, B.; Hua, D.-X.; Yan, Y.; Zhao, H.-Y.; Xiao, W.-D. An efficient calcium-based sorbent for flue gas dry-desulfurization: Promotion roles of nitrogen oxide and oxygen. RSC advances 2023, 13, 1312-1319.
13. Watts, D.B.; Dick, W.A. Sustainable uses of fgd gypsum in agricultural systems: Introduction. Journal of Environmental Quality 2014, 43, 246-252.
14. Ladwig, K. A review of manufacturing uses for gypsum produced by flue gas desulfurization systems. Electric Power Research Institute, Interim Report 2006.
15. UNION, E. Guidelines on state aid for climate, environmental protection and energy 2022. 2022.
16. China: New law replacing pollution discharge fee with environmental protection tax. https://www.loc.gov/item/global-legal-monitor/2017-02-08/china-new-law-replacing-pollution-discharge-fee-with-environmental-protection-tax/?utm_source=chatgpt.com
17. Agency, U.S.E.P. Conditions of use of the risk evaluation for formaldehyde. 2024.
18. Kang, Y.-J.; Jo, H.-K.; Jang, M.-H.; Ma, X.; Jeon, Y.; Oh, K.; Park, J.-I. A brief review of formaldehyde removal through activated carbon adsorption. Applied Sciences 2022, 12, 5025.
19. Mursics, J.; Urbancl, D.; Goricanec, D. Process of formaldehyde and volatile organic compounds’ removal from waste gases. Applied Sciences 2020, 10, 4702.
20. Yuan, M.; Kong, J.; Zhao, J.; Tang, R.; Tian, Y.; Qiao, Y. Study on the optimized al2o3–so3h catalysis for a new formaldehyde recovery process. International Journal of Hydrogen Energy 2021, 46, 37824-37835.
21. Formaldehyde, one of the most studied chemicals in use today, is being reviewed by epa https://www.americanchemistry.com/industry-groups/formaldehyde
22. Obeso, J.L.; López-Cervantes, V.B.; Ojeda-López, R.; Yañez-Aulestia, A.; Cordero-Sánchez, S.n.; Sánchez-González, E.; Novelo-Peralta, O.; Reyes Morales, K.E.; Solís-Ibarra, D.; Ibarra, I.A. So2 capture and detection by sba-15 and amine-functionalized sba-15. Industrial & Engineering Chemistry Research 2024, 63, 2223-2230.
23. Tailor, R.; Abboud, M.; Sayari, A. Supported polytertiary amines: Highly efficient and selective so2 adsorbents. Environmental science & technology 2014, 48, 2025-2034.
24. Li, W.; Li, J.; Duong, T.D.; Sapchenko, S.A.; Han, X.; Humby, J.D.; Whitehead, G.F.; Victórica-Yrezábal, I.J.; Da Silva, I.; Manuel, P. Adsorption of sulfur dioxide in cu (ii)-carboxylate framework materials: The role of ligand functionalization and open metal sites. Journal of the American Chemical Society 2022, 144, 13196-13204.
25. Khoma, R.; Vodzinskii, S.; Klimov, D. Impregnated activated carbon materials for respiratory purpose. Chemisorption of sulfur dioxide. Ukrainian Chemistry Journal 2023, 89, 124-144.
26. Livas, C.G.; Raptis, D.; Tylianakis, E.; Froudakis, G.E. Multiscale theoretical study of sulfur dioxide (so2) adsorption in metal–organic frameworks. Molecules 2023, 28, 3122.
27. U.S. Geological survey, mineral commodity summaries, january 2024 2024.
28. EPA, U.S. Dry sorbent injection for so2/hcl control cost development methodology. 2017.
29. Jacobs, J.H.; Chou, N.; Lesage, K.L.; Xiao, Y.; Hill, J.M.; Marriott, R.A. Investigating activated carbons for so2 adsorption in wet flue gas. Fuel 2023, 353, 129239.
30. Jaramillo, P. A life cycle comparison of coal and natural gas for electricity generation and the production of transportation fuels. Carnegie Mellon University: 2007.
31. Agency, U.S.E.P.; Management, O.o.L.a.E.; Recovery, O.o.R.C.a. Beneficial use evaluation:Flue gas desulfurization gypsum as an agricultural amendment. 2023.
32. Eastern Research Group, I. Dry sorbent injection for so2/hcl control cost development methodology. 2022.
33. Koech, L.; Everson, R.C.; Hattingh, B.; Rutto, H.; Lerotholi, L.; Neomagus, H.W. Comparative study of sorbents for spray dry scrubbing of so2 from flue gases. ACS omega 2023, 8, 23401-23411.
34. Xu, J.; Cao, F.; He, C.; Dai, J. Efficient sulfur accumulation in biological desulfurisation and denitrification induced by microbial and chemical interactions. Environmental Technology 2024, 1-12.
35. Baur, G.B.; Spring, J.; Kiwi-Minsker, L. Amine functionalized activated carbon fibers as effective structured adsorbents for formaldehyde removal. Adsorption 2018, 24, 725-732.
36. Vellingiri, K.; Deng, Y.-X.; Kim, K.-H.; Jiang, J.-J.; Kim, T.; Shang, J.; Ahn, W.-S.; Kukkar, D.; Boukhvalov, D.W. Amine-functionalized metal–organic frameworks and covalent organic polymers as potential sorbents for removal of formaldehyde in aqueous phase: Experimental versus theoretical study. ACS applied materials & interfaces 2018, 11, 1426-1439.
37. EPA, U.S. What should i know about formaldehyde and indoor air quality? https://www.epa.gov/indoor-air-quality-iaq/what-should-i-know-about-formaldehyde-and-indoor-air-quality
38. Wu, L.; Qin, Z.; Zhang, L.; Meng, T.; Yu, F.; Ma, J. Cnt-enhanced amino-functionalized graphene aerogel adsorbent for highly efficient removal of formaldehyde. New Journal of Chemistry 2017, 41, 2527-2533.
39. Sun, Z.; Wang, Z.; Yang, X.; An, K.; Qu, Z.; Tang, Z.; Lai, S.; He, M.; Yang, L.; Zhou, B. Synergistic mechanism of formaldehyde adsorption by intrinsic defects and carboxyl groups on the surface of carbon materials. Chemosphere 2023, 337, 139351.
40. Huang, K.; Shi, W.; Liu, Y.; Sun, B.; Zhang, J.; Zhu, Y.; Xie, Z. 4-aminothiophenol/formaldehyde-based, n/s-containing amorphous porous organic polymer: Preparation from catalyst-free thiol-aldehyde-amine reaction and its application in high-performance iodine capture. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 686, 133385.
41. Nagnure, H.M.; Prasad, T.; Kundu, D. Selective gas adsorption using graphitic carbon nitride: Exploring the role of molecular descriptors by artificial intelligence frameworks. Journal of Environmental Management 2025, 376, 124432.
42. Zhu, R.; Guo, J.; Pang, H.; Zhao, D.; Liu, Q.; Liang, P. Adsorption separation of gaseous pollutants over porous carbon materials: A review. Journal of the Energy Institute 2025, 102129.
43. Zafari, R.; Mendonça, F.G.; Baker, R.T.; Fauteux-Lefebvre, C. Efficient so2 capture using an amine-functionalized, nanocrystalline cellulose-based adsorbent. Separation and Purification Technology 2023, 308, 122917.
44. Lin, R.-B.; Xiang, S.; Zhou, W.; Chen, B. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337-363.
45. Xu, C.; Hedin, N. Microporous adsorbents for co2 capture–a case for microporous polymers? Materials Today 2014, 17, 397-403.
46. Patel, J.; Sharme, R.K.; Quijada, M.A.; Rana, M.M. A review of transparent conducting films (tcfs): Prospective ito and azo deposition methods and applications. Nanomaterials 2024, 14, 2013.
47. Liu, S.; Xu, X.; Jiang, J. Flexible transparent ito thin film with high conductivity and high-temperature resistance. Ceramics International 2024, 50, 47649-47654.
48. Chakraborty, A.; Herrera, D.; Fallen, P.; Hall, D.; Bampton, N.; Olivero, T.; Orlowski, M. Conductive organic electrodes for flexible electronic devices. Scientific Reports 2023, 13, 4125.
49. Xia, Y.; Yalagala, B.P.; Karimullah, A.S.; Heidari, H.; Ghannam, R. Beyond flexibility: Transparent silver nanowire electrodes on patterned surfaces for reconfigurable devices. Advanced Engineering Materials 2024, 26, 2301165.
50. Liu, L.; Cheng, Y.; Zhang, X.; Shan, Y.; Zhang, X.; Wang, W.; Li, D. Graphene-based transparent conductive films with enhanced transmittance and conductivity by introducing antireflection nanostructure. Surface and Coatings Technology 2017, 325, 611-616.
51. Marghade, D.; Shelare, S.; Prakash, C.; Soudagar, M.E.M.; Khan, T.Y.; Kalam, M. Innovations in metal-organic frameworks (mofs): Pioneering adsorption approaches for persistent organic pollutant (pop) removal. Environmental Research 2024, 119404.
52. Ezzeddine, Z.; Batonneau-Gener, I.; Ghssein, G.; Pouilloux, Y. Recent advances in heavy metal adsorption via organically modified mesoporous silica: A review. Water 2025, 17, 669.
53. Alkhaldi, H.; Alharthi, S.; Alharthi, S.; AlGhamdi, H.A.; AlZahrani, Y.M.; Mahmoud, S.A.; Amin, L.G.; Al-Shaalan, N.H.; Boraie, W.E.; Attia, M.S. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: A review. RSC advances 2024, 14, 33143-33190.
54. Alex, A.; Sugunan, S.K.; George, G. Carbon nanostructures functionalization for gas separation membranes. In Handbook of functionalized carbon nanostructures: From synthesis methods to applications, Springer: 2024; pp 1859-1894.
55. Miller, D.D.; Chuang, S.S. Experimental and theoretical investigation of so2 adsorption over the 1, 3-phenylenediamine/sio2 system. The Journal of Physical Chemistry C 2015, 119, 6713-6727.
56. Zhao, Q.; Zhao, W.; Chai, M.; Chen, L.; Wang, Y.; Jia, Q.; Chen, Y. Phase-change absorption of so2 by n, n, n′, n′-tetramethyl-p-phenylenediamine in organic solvents and utilization of absorption product. Energy & Fuels 2018, 32, 2073-2080.
57. Tailor, R.; Ahmadalinezhad, A.; Sayari, A. Selective removal of so2 over tertiary amine-containing materials. Chemical engineering journal 2014, 240, 462-468.
58. Wang, D.; Xie, J.; Li, G.; Meng, W.; Li, J.; Li, D.; Zhou, H. Multiobjective evaluation of amine-based absorbents for so2 capture process using the p k a mathematical model. ACS omega 2022, 7, 2897-2907.
59. Wei, Z.; Lü, X.-f.; Wang, W.; Mele, G.; Jiang, Z.-Y. Excellent removal performance of 4, 4'-biphenyldicarboxaldehyde m-phenylenediamine schiff base magnetic polymer towards phenanthrene and 9-phenanthrol: Experimental, modeling and dft calculations studies. Journal of Hazardous Materials 2023, 441, 129920.
60. Elving, P.J.; Danzig, M.H.; Bachman, G.B. In Synthetic resins and base exchange phenomena, Proceedings of the Indiana Academy of Science, 1941; pp 136-145.
61. Srisuda, S.; Virote, B. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials. Journal of Environmental Sciences 2008, 20, 379-384.
62. Sabr, O. Preparation and evalution water resistance, mechanical and morpholgical characteristics of pva/sio2 nanocomposites for food industry applications. 2021.
63. Nguyen, C.H.; Fu, C.-C.; Chen, Z.-H.; Van Tran, T.T.; Liu, S.-H.; Juang, R.-S. Enhanced and selective adsorption of urea and creatinine on amine-functionalized mesoporous silica sba-15 via hydrogen bonding. Microporous and Mesoporous Materials 2021, 311, 110733.
64. Cancer, I.A.f.R.o. Sulfur dioxide and some sulfites, bisulfites and metabisulfites. 2019.
65. Dovrou, E.; Bates, K.H.; Rivera-Rios, J.C.; Cox, J.L.; Shutter, J.D.; Keutsch, F.N. Towards a chemical mechanism of the oxidation of aqueous sulfur dioxide via isoprene hydroxyl hydroperoxides (isopooh). Atmospheric Chemistry and Physics 2021, 21, 8999-9008.
66. Kiattibutr, P.; Tarachiwin, L.; Ruangchuay, L.; Sirivat, A.; Schwank, J. Electrical conductivity responses of polyaniline films to so2–n2 mixtures: Effect of dopant type and doping level. Reactive and functional polymers 2002, 53, 29-37.
67. Cueto-Díaz, E.J.; Castro Muñiz, A.; Suárez García, F.n.; Alkorta, I.; Valles González, M.a.P.; Mateo-Martí, E. Effect of surface organo-silanization on sba-15 mesoporous silicas in co2 adsorption processes: Design, synthesis, and computational studies. Industrial & Engineering Chemistry Research 2023, 62, 11001-11015.
68. Baran, N.Y.; Saçak, M. Synthesis, characterization and molecular weight monitoring of a novel schiff base polymer containing phenol group: Thermal stability, conductivity and antimicrobial properties. Journal of Molecular Structure 2017, 1146, 104-112.
69. Hsu, Y.-T.; Wang, C.-C.; Shi, S.-C. Resistance-based co 2 detection using eco-friendly tetraethylenepentamine-functionalized polyvinyl alcohol films. Sensors and Materials 2025, 37, 1863-1870.
70. Vajhadin, F.; Mazloum‐Ardakani, M.; Amini, A. Metal oxide‐based gas sensors for the detection of exhaled breath markers. Medical devices & sensors 2021, 4, e10161.
71. Cui, Y.; Zhao, D.; Li, J.; Zhang, L. Investigating arrangements of doping b atoms affecting electrical structures of graphene nanoribbons from dftb simulations. Materials Science in Semiconductor Processing 2022, 149, 106899.
72. Li, C.; He, M.; Tian, S.; Yuan, J.; Wang, J.; Li, Y. Study on the detection characteristics and response mechanism of sns2-based sensors for so2 and sof2. Chemosensors 2022, 10, 526.
73. Hou, T.; Zeng, W.; Zhou, Q. Adsorption mechanism of so2 on transition metal (pd, pt, au, fe, co and mo)-modified inp3 monolayer. Chemosensors 2022, 10, 279.