簡易檢索 / 詳目顯示

研究生: 胡哲旭
Hu, Chu-Hsu
論文名稱: Sn1-xSbxSe奈米晶液相合成及可調控能隙研究
Solution-phase synthesis and tunable bandgap of Sn1-xSbxSe nanocrystals
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 123
中文關鍵詞: Sn1-xSbxSe奈米晶濕式化學合成單一反應系統能隙調控
外文關鍵詞: Sn1-xSbxSe nanocrystals, wet chemical synthesis, one-pot system, tunable bandgap
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以單一反應系統(one-pot system)在230-270°C 反應10到24小時合成銻摻雜之Sn1-xSbxSe奈米晶(0 ≤ x ≤ 0.4),並探討銻的摻雜對於相的生成、形貌改變及能隙的變化影響。隨著銻摻雜量(x)的上升,合成不含其他雜質的單一SnSe相,其所需要的溫度以及時間都需要增加。Sn1-xSbxSe奈米晶之摻雜量介於0 ≤ x ≤ 0.2及0.3 ≤ x ≤ 0.4分別形成SnSe(1)及SnSe(2)兩種不同的相。SnSe(1)到SnSe(2)相變的原因可以歸因於越多的銻摻雜則引入越多的錫空位缺陷進入Sn1-xSbxSe晶體中。未摻雜的SnSe形貌為奈米板狀結晶,銻的摻雜促進Sn1-xSbxSe奈米柱的成長,且數量隨銻的摻雜量而上升。Sn1-xSbxSe奈米晶的能隙隨銻濃度x=0增加到0.4,間接能隙從0.92 eV增加到1.37 eV,直接能隙從1.37 eV增加至1.54 eV。此研究結果顯示,Sn1-xSbxSe奈米晶的形貌和能隙可以藉由銻的摻雜量來控制,而使得其具有成為太陽能材料的潛力。

    The effects of Sb dopant on the phase formation, morphology, and bandgap of Sn1-xSbxSe nanocrystals with 0 ≤ x ≤ 0.4 synthesized at 230-270°C for 10-24 h in a one-pot system were studied. The synthesis temperature and time required to form single SnSe phase without the impurities in the Sn1-xSbxSe nanocrystals increased with the amount (x) of Sb dopant. Two different phases, SnSe(1) and SnSe(2), occurred in the Sn1-xSbxSe nanocrystals with 0 ≤ x ≤ 0.2 and 0.3 ≤ x ≤ 0.4, respectively. The phase transformation from SnSe(1) to SnSe(2) can be attributed to the introduction of more Sb dopant and thus more Se vacancies into the Sn1-xSbxSe lattice. The undoped SnSe nanocrystals grew as the morphology of nanosheets, while the introduction of Sb enhanced the growth of Sn1-xSbxSe nanorods with the extent increasing with the amount of Sb dopant. The indirect bandgap of Sn1-xSbxSe nanocrystals could be tuned from 0.92 to 1.37 eV by increasing the Sb concentration (x) from 0 to 0.4, direct bandgap can also be tuned from 1.37 to 1.54 eV. This study reveals that the morphology and bandgap of Sn1-xSbxSe nanocrystals can be tuned by adjusting the amount of Sb dopant, making the Sn1-xSbxSe nanocrystals potential candidates as the photovoltaic materials.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 第一章 引言 1 第二章 光電基礎理論與文獻回顧 4 2.1 基本光電原理 4 2.1.1 光傳導效應(Photoconductive effect) 4 2.1.2 光伏效應(Photovoltaic effect)[4] 4 2.2 太陽能材料介紹 5 2.2.1 太陽能材料物理特性需求 5 2.2.2 太陽能材料分類 5 2.3 可調控能隙材料 10 2.3.1可調控能隙材料文獻回顧 10 2.3.2 SnSe奈米晶合成及特性 13 2.3.3 藉由控制尺寸調控SnSe能隙 15 2.3.4 藉由元素摻雜SnSe調控能隙及性質 17 2.4研究動機 20 第三章實驗步驟與方法 23 3.1 濕式化學法在氮氣中合成Sn1-xSbxSe奈米晶 23 3.2 材料特性分析 24 3.2.1 X光繞射儀(X-ray Diffractometer)[74] 24 3.2.2 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM) [74] 25 3.2.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) [74] 27 3.2.4 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer, EDS) [74] 29 3.2.5 紫外/可見光(UV-vis)光譜儀[75-78] 30 3.2.6 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis,ESCA)[79] 31 第四章結果與討論 33 4.1濕式化學法於氮氣中製備SnSe晶粒 33 4.2濕式化學法於氮氣中製備Sn1-xSbxSe奈米晶 34 4.3銻摻雜之Sn1-xSbxSe奈米板與奈米柱結晶化學組成及微結構 37 4.4銻摻雜之Sn1-xSbxSe奈米晶光學性值影響 40 第五章結論 42 參考文獻 44 附錄 117 JCPDS Cards No. 01-075-6133 (SnSe) 117 JCPDS Cards No. 00-032-1382 (SnSe) 119 JCPDS Cards No. 01-079-4845 (SnSe2) 120 JCPDS Cards No. 01-072-1184 (Sb2Se3) 121 JCPDS Cards No. 01-085-1324 (Sb) 123  

    [1] 賴麗蓉, "京都議定書之分析及未來發展勢," 能源季刊, vol. 28, 1998.
    [2] S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, "Organic-based photovoltaics. toward low-cost power generation," Mrs Bulletin, vol. 30, pp. 10-19, Jan 2005.
    [3] D. R. E. Adams. W. G, "The Action of Light on Selenium," The Journal of the Society of Telegraph Engineers, vol. 167,pp. 313-349, 1877.
    [4] C. T. Dervos, P. D. Skafidas, J. A. Mergos, and P. Vassiliou, "p-n junction photocurrent modelling evaluation under optical and electrical excitation," Sensors, vol. 4, pp. 58-70, 2004.
    [5] R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide, and C. Levy-Clement, "Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell," Comptes Rendus Chimie, vol. 9, pp. 717-729, 2006.
    [6] S. Y. Chen, X. G. Gong, A. Walsh, and S. H. Wei, "Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights," Applied Physics Letters, vol. 94,pp. 041903, 2009.
    [7] A. Devos, "Detailed balance limit of the efficiency of tandem solar-cells," Journal of Physics D-Applied Physics, vol. 13, pp. 839-846, 1980.
    [8] J. Meiss, K. Leo, M. K. Riede, C. Uhrich, W. M. Gnehr, S. Sonntag, et al., "Efficient semitransparent small-molecule organic solar cells," Applied Physics Letters, vol. 95,pp. 213306, 2009.
    [9] J. N. Clifford, E. Palomares, K. Nazeeruddin, R. Thampi, M. Gratzel, and J. R. Durrant, "Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films," Journal of the American Chemical Society, vol. 126, pp. 5670-5671, 2004.
    [10] V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, et al., "Concentrator PV modules and solar cells for TPV systems," Solar Energy Materials and Solar Cells, vol. 84, pp. 3-17, 2004.
    [11] M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, "Multi-junction III-V solar cells: current status and future potential," Solar Energy, vol. 79, pp. 78-85, 2005.
    [12] N. V. Yastrebova, "High-efficiency multi-junction solar cells: Current status and future potential," 2007.
    [13] H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, and Y. Zhang, "Tunable band gap Cu2ZnSnS4xSe4(1-x) nanocrystals: experimental and first-principles calculations," CrystEngComm, vol. 13, pp. 2222-2226, 2011.
    [14] Z. Q. Li, J. H. Shi, Q. Q. Liu, Y. W. Chen, Z. Sun, Z. Yang, et al., "Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell," Nanotechnology, vol. 22,pp. 265615, 2011.
    [15] P. C. Dai, X. N. Shen, Z. J. Lin, Z. Y. Feng, H. Xu, and J. H. Zhan, "Band-gap tunable (Cu2Sn)(x/3)Zn1-xS nanoparticles for solar cells," Chemical Communications, vol. 46, pp. 5749-5751, 2010.
    [16] Q. H. Liu, Z. C. Zhao, Y. H. Lin, P. Guo, S. J. Li, D. C. Pan, et al., "Alloyed (ZnS)(x)(Cu2SnS3)(1-x) and (CuInS2)(x)(Cu2SnS3)(1-x) nanocrystals with arbitrary composition and broad tunable band gaps," Chemical Communications, vol. 47, pp. 964-966, 2011.
    [17] G. M. Ford, Q. Guo, R. Agrawal, and H. W. Hillhouse, "Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication," Chemistry of Materials, vol. 23, pp. 2626-2629, 2011.
    [18] V. Sholin, A. J. Breeze, I. E. Anderson, Y. Sahoo, D. Reddy, and S. A. Carter, "All-inorganic CdSe/PbSe nanoparticle solar cells," Solar Energy Materials and Solar Cells, vol. 92, pp. 1706-1711, 2008.
    [19] E. Barrios-Salgado, M. T. S. Nair, P. K. Nair, and R. A. Zingaro, "Chemically deposited thin films of PbSe as an absorber component in solar cell structures," Thin Solid Films, vol. 519, pp. 7432-7437, 2011.
    [20] M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, "Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model," Nano Letters, vol. 8, pp. 3904-3910, 2008.
    [21] S. Kitada, E. Kikuchi, A. Ohno, S. Aramaki, and S. Maenosono, "Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells," Solid State Communications, vol. 149, pp. 1853-1855, 2009.
    [22] X. F. Wang, W. Z. Lu, Z. K. Luo, and F. Wang, "Microwave Assisted Preparation and Characterization of Monodispersed PbSe Nanoparticles in Solar Cell," Rare Metal Materials and Engineering, vol. 39, pp. 103-106, 2010.
    [23] J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. F. Sung, et al., "PbSe Nanocrystal Excitonic Solar Cells," Nano Letters, vol. 9, pp. 3749-3755, 2009.
    [24] P. K. Nair, E. Barrios-Salgado, J. Capistran, M. L. Ramon, M. T. S. Nair, and R. A. Zingaro, "PbSe Thin Films in All-Chemically Deposited Solar Cells," Journal of the Electrochemical Society, vol. 157, pp. D528-D537, 2010.
    [25] S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature, vol. 420, pp. 800-803, 2002.
    [26] S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, "Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices," Organic Electronics, vol. 4, pp. 123-130, 2003.
    [27] X. Zhong, Y. Feng, W. Knoll, and M. Han, "Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width," Journal of the American Chemical Society, vol. 125, pp. 13559-13563, 2003.
    [28] T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, "Complete composition tunability of InGaN nanowires using a combinatorial approach," Nat Mater, vol. 6, pp. 951-956, 2007.
    [29] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, et al., "Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System," Chemistry of Materials, vol. 18, pp. 3330-3335, 2006.
    [30] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, et al., "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics," Journal of the American Chemical Society, vol. 130, pp. 16770-16777, 2008.
    [31] W. N. Shafarman, R. Klenk, and B. E. McCandless, "Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap," Journal of Applied Physics, vol. 79, pp. 7324-7328, 1996.
    [32] J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, "Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles," Chemistry of Materials, vol. 20, pp. 6906-6910, 2008.
    [33] W. Ma, J. M. Luther, H. M. Zheng, Y. Wu, and A. P. Alivisatos, "Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals," Nano Letters, vol. 9, pp. 1699-1703, Apr 2009.
    [34] Z. Zainal, S. Nagalingam, A. Kassim, M. Z. Hussein, and W. M. M. Yunus, "Effects of annealing on the properties of SnSe films," Solar Energy Materials and Solar Cells, vol. 81, pp. 261-268, 2004.
    [35] M. Popescu, F. Sava, A. Lőrinczi, G. Socol, I. N. Mihăilescu, A. Tomescu, et al., "Structure, properties and gas sensing effect of SnSe2 films prepared by pulsed laser deposition method," Journal of Non-Crystalline Solids, vol. 353, pp. 1865-1869, 2007.
    [36] I. Lefebvre, M. A. Szymanski, J. Olivier-Fourcade, and J. C. Jumas, "Electronic structure of tin monochalcogenides from SnO to SnTe," Physical Review B, vol. 58, pp. 1896-1906, 1998.
    [37] A. Erdemir, "Crystal-chemistry and solid lubricating properties of the monochalcogenides gallium selenide and tin selenide," Tribology Transactions, vol. 37, pp. 471-478, 1994.
    [38] M. M. Haluk ŞAFAK, Ő. Faruk YŰKSEL, "Dispersion Analysis of SnS and SnSe," Turkish Journal of Physics, vol. 26,pp341-347, 2002.
    [39] N. Yellin and L. Bendor, "Low-temperature synthesis of binary chalcogenides," Materials Research Bulletin, vol. 18, pp. 823-827, 1983.
    [40] O. P. Agnihotri, A. K. Jain, and B. K. Gupta, "Single-crystal growth of stannous selenide," Journal of Crystal Growth, vol. 46, pp. 491-494, 1979.
    [41] N. Erdem, S. Onurlu, and H. Yorucu, "Vapor liquid synthesis of tin selenides," Journal of Materials Science Letters, vol. 8, pp. 483-484, 1989.
    [42] W. Z. Wang, Y. Geng, Y. T. Qian, C. Wang, and X. M. Liu, "A convenient, low temperature route to nanocrystalline SnSe," Materials Research Bulletin, vol. 34, pp. 403-406, 1999.
    [43] W. Z. Wang, Y. Geng, P. Yan, F. Y. Liu, Y. Xie, and Y. T. Qian, "A novel mild route to nanocrystalline selenides at room temperature," Journal of the American Chemical Society, vol. 121, pp. 4062-4063, 1999.
    [44] W. X. Zhang, Z. H. Yang, J. W. Liu, L. Zhang, Z. H. Hui, W. C. Yu, et al., "Room temperature growth of nanocrystalline tin (II) selenide from aqueous solution," Journal of Crystal Growth, vol. 217, pp. 157-160, 2000.
    [45] G. SHEN, D. CHEN, X. JIANG, K. TANG, Y. LIU, and Y. QIAN, "Rapid synthesis of SnSe nanowires via an ethylenediamine-assisted polyol route," Tokyo, JAPON: Chemical Society of Japan,vol. 32, pp. 426-427, 2003.
    [46] Q. Han, Y. Zhu, X. Wang, and W. Ding, "Room temperature growth of SnSe nanorods from aqueous solution," Journal of Materials Science, vol. 39, pp. 4643-4646, 2004.
    [47] J. Sharma, G. Singh, A. Thakur, G. S. S. Saini, N. Goyal, and S. K. Tripathi, "Preparation and characterization of snse nanocrystalline thin films," Journal of Optoelectronics and Advanced Materials, vol. 7, pp. 2085-2094, 2005.
    [48] B. Pejova and I. Grozdanov, "Chemical synthesis, structural and optical properties of quantum sized semiconducting tin(II) selenide in thin film form," Thin Solid Films, vol. 515, pp. 5203-5211, 2007.
    [49] M. A. Franzman, C. W. Schlenker, M. E. Thompson, and R. L. Brutchey, "Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells," Journal of the American Chemical Society, vol. 132, pp. 4060, 2010.
    [50] W. J. Baumgardner, J. J. Choi, Y. F. Lim, and T. Hanrath, "SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry," Journal of the American Chemical Society, vol. 132, pp. 9519-9521, 2010.
    [51] S. Liu, X. Y. Guo, M. R. Li, W. H. Zhang, X. Y. Liu, and C. Li, "Solution-Phase Synthesis and Characterization of Single-Crystalline SnSe Nanowires," Angewandte Chemie-International Edition, vol. 50, pp. 12050-12053, 2011.
    [52] F. D. Wang, R. Tang, H. Yu, P. C. Gibbons, and W. E. Buhro, "Size- and shape-controlled synthesis of bismuth nanoparticles," Chemistry of Materials, vol. 20, pp. 3656-3662, 2008.
    [53] G. K. S. N.N. Gosai, K.D. Patel, Keyur S. Hingarajiya, "Structural and Thermal Properties of Cu Doped Nanocrystalline Tin Selenide," Advanced Materials Research, vol. 665,pp. 15-21, 2013.
    [54] H. Wei, Y. J. Su, S. Z. Chen, Y. Lin, Z. Yang, X. S. Chen, et al., "Novel SnSxSe1-x nanocrystals with tunable band gap: experimental and first-principles calculations," Journal of Materials Chemistry, vol. 21, pp. 12605-12608, 2011.
    [55] R. D. Shannon, "Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica Section A, vol. 32, pp. 751-767, 1976.
    [56] T. Mahalingam, V. Dhanasekaran, G. Ravi, R. Chandramohan, A. Kathalingam, and J.-K. Rhee, "Role of Deposition Potential on the Optical Properties of SnSSe Thin Films," ECS Transactions, vol. 35, pp. 1-10, 2011.
    [57] S. Chen, K. F. Cai, and W. Y. Zhao, "The effect of Te doping on the electronic structure and thermoelectric properties of SnSe," Physica B-Condensed Matter, vol. 407, pp. 4154-4159, 2012.
    [58] J. J. Buckley, F. A. Rabuffetti, H. L. Hinton, and R. L. Brutchey, "Synthesis and Characterization of Ternary SnxGe1-xSe Nanocrystals," Chemistry of Materials, vol. 24, pp. 3514-3516, 2012.
    [59] N. S. Lewis, "Toward cost-effective solar energy use," Science, vol. 315, pp. 798-801, 2007.
    [60] E. H. Sargent, "Infrared photovoltaics made by solution processing," Nature Photonics, vol. 3, pp. 325-331, 2009.
    [61] I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, "Air-stable all-inorganic nanocrystal solar cells processed from solution," Science, vol. 310, pp. 462-465, 2005.
    [62] D. C. Pan, X. L. Wang, Z. H. Zhou, W. Chen, C. L. Xu, and Y. F. Lu, "Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps," Chemistry of Materials, vol. 21, pp. 2489-2493, 2009.
    [63] H. Yoon, J. E. Granata, P. Hebert, R. R. King, C. M. Fetzer, P. C. Colter, et al., "Recent advances in high-efficiency III-V multi-junction solar cells for space applications: Ultra triple junction qualification," Progress in Photovoltaics, vol. 13, pp. 133-139, 2005.
    [64] J. M. Nedeljkovic, M. T. Nenadovic, O. I. Micic, and A. J. Nozik, "Enhanced photoredox chemistry in quantized semiconductor colloids," Journal of Physical Chemistry, vol. 90, pp. 12-13, 1986.
    [65] A. J. Nozik, F. Williams, M. T. Nenadovic, T. Rajh, and O. I. Micic, "Size quantization in small semiconductor particles," Journal of Physical Chemistry, vol. 89, pp. 397-399, 1985.
    [66] F. W. Wise, "Lead salt quantum dots: The limit of strong quantum confinement," Accounts of Chemical Research, vol. 33, pp. 773-780, 2000.
    [67] M. Z. Xue, J. Yao, S. C. Cheng, and Z. W. Fu, "Lithium electrochemistry of a novel SnSe thin-film anode," Journal of the Electrochemical Society, vol. 153, pp. A270-A274, 2006.
    [68] D. Chun, R. Walser, R. Bene, and T. Courtney, "Polarity‐dependent memory switching in devices with SnSe and SnSe 2 crystals," Applied Physics Letters, vol. 24, pp. 479-481, 1974.
    [69] A. Agarwal, P. H. Trivedi, and D. Lakshminarayana, "Impact of electrical resistance and TEP in layered SnSe crystals under high pressure," Crystal Research and Technology, vol. 40, pp. 789-790, 2005.
    [70] M. Ramachandran, D. Martinez-Escobar, J. S. Narro-Rios, and A. Sanchez-Juarez, "Low power plasma treatment for the growth of snse thin films for photovoltaic applications," Chalcogenide Letters, vol. 8, pp. 695-697, 2011.
    [71] S. Schlecht, M. Budde, and L. Kienle, "Nanocrystalline tin as a preparative tool: Synthesis of unprotected nanoparticles of SnTe and SnSe and a new route to (PhSe)4Sn," Inorganic Chemistry, vol. 41, pp. 6001-6005, 2002.
    [72] J. J. Ning, K. K. Men, G. J. Xiao, L. Wang, Q. Q. Dai, B. Zou, et al., "Facile synthesis of IV-VI SnS nanocrystals with shape and size control: Nanoparticles, nanoflowers and amorphous nanosheets," Nanoscale, vol. 2, pp. 1699-1703, 2010.
    [73] D. V. Harea, M. A. Iovu, O. Iaseniuc, E. P. Colomeico, A. Meshalkin, and M. S. Iovu, "Modification of the optical constants in amorphous Sb2Se3:Sn thin films under the illumination and heat treatment," Journal of Optoelectronics and Advanced Materials, vol. 11, pp. 2039-2043, 2009.
    [74] 汪建民等人, "材料分析," 中國材料科學學會, 1998.
    [75] R. L. W. a. R. P. Ley, "Optical Properties of Indium Oxide," Journal of Applied Physics, vol. 37,pp. 1-466, 1966.
    [76] Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, "Optical spectroscopy of Eu3+ doped ZnO nanocrystals," Journal of Physical Chemistry C, vol. 112, pp. 686-694, 2008.
    [77] F. Ye and A. Ohmori, "The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings," Surface and Coatings Technology, vol. 160, pp. 62-67, 2002.
    [78] D. D. Vaughn, R. J. Patel, M. A. Hickner, and R. E. Schaak, "Single-Crystal Colloidal Nanosheets of GeS and GeSe," Journal of the American Chemical Society, vol. 132, pp. 15170-15172, 2010.
    [79] J. C. V. a. I. S. Gilmore, "Surface analysis: the principal techniques," Wiley Online Library, 2009.
    [80] A. Ettema and C. Haas, "An x-ray photoemission spectroscopy study of interlayer charge-transfer in some misfit layer compounds," Journal of Physics-Condensed Matter, vol. 5, pp. 3817-3826, 1993.
    [81] W. F. S. J.F.Moulder, P.E.Sobol, K.D.Bomben, "Handbook of X Ray Photoelectron Spectroscopy," Perkin-Elmer Corp, 1992.
    [82] V. P. Zakaznova-Herzog, S. L. Harmer, H. W. Nesbitt, G. M. Bancroft, R. Flemming, and A. R. Pratt, "High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction," Surface Science, vol. 600, pp. 348-356, 2006.
    [83] L.H. Ahrens, "The use of ionization potentials Part 1. Ionic radii of the elements," Geochimica et Cosmochimica Acta, vol. 2, pp155-169, 1952.
    [84] S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulović, and S. Gradečak, "Heterojunction Photovoltaics Using GaAs Nanowires and Conjugated Polymers," Nano Letters, vol. 11, pp. 408-413, 2010.
    [85] M. J. Hetzer, Y. M. Strzhemechny, M. Gao, M. A. Contreras, A. Zunger, and L. J. Brillson, "Direct observation of copper depletion and potential changes at copper indium gallium diselenide grain boundaries," Applied Physics Letters, vol. 86, pp. 162105-162105-3, 2005.
    [86] H. Peng, D. T. Schoen, S. Meister, X. F. Zhang, and Y. Cui, "Synthesis and Phase Transformation of In2Se3 and CuInSe2 Nanowires," Journal of the American Chemical Society, vol. 129, pp. 34-35, 2006.
    [87] C. Persson and A. Zunger, "Anomalous Grain Boundary Physics in Polycrystalline CuInSe2: The Existence of a Hole Barrier," Physical Review Letters, vol. 91, 2003.
    [88] L. Shi, C. J. Pei, Y. M. Xu, and Q. Li, "Template-Directed Synthesis of Ordered Single-Crystalline Nanowires Arrays of Cu2ZnSnS4 and Cu2ZnSnSe4," Journal of the American Chemical Society, vol. 133, pp. 10328-10331, 2011.
    [89] D. S. Wang, C. H. Hao, W. Zheng, Q. Peng, T. H. Wang, Z. M. Liao, et al., "Ultralong single-crystalline Ag2S nanowires: Promising candidates for photoswitches and room-temperature oxygen sensors," Advanced Materials, vol. 20, pp. 2628, 2008.
    [90] G. Y. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, et al., "The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures," Journal of Physical Chemistry C, vol. 112, pp. 672-679, 2008.
    [91] N. Maiti, S. H. Im, Y. H. Lee, C. H. Kim, and S. I. Seok, "Solvent-assisted growth of Sb2Se3 nanocompounds from a single-source precursor under mild reaction conditions," Crystengcomm, vol. 13, pp. 3767-3772, 2011.
    [92] A. Kompany, H. A. R. Aliabad, S. M. Hosseini, and J. Baedi, "Effect of substituted IIIB transition metals on electronic properties of indium oxide by first-principles calculations," Physica Status Solidi B-Basic Solid State Physics, vol. 244, pp. 619-628, 2007.
    [93] I. Hamberg and C. G. Granqvist, "Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows," Journal of Applied Physics, vol. 60, pp. R123-R160, 1986.
    [94] E. Burstein, "Anomalous optical absorption limit in InSb," Physical Review, vol. 93, pp. 632-633, 1954.
    [95] T. S. Moss, "The interpretation of the properties of indium antimonide," Proceedings of the Physical Society of London Section B, vol. 67, pp. 775-782, 1954.
    [96] I. Hamberg, C. G. Granqvist, K. F. Berggren, B. E. Sernelius, and L. Engstrom, "Band-gap widening in heavily Sn-doped In2o3," Physical Review B, vol. 30, pp. 3240-3249, 1984.
    [97] H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, "Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique," Journal of Crystal Growth, vol. 268, pp. 596-601, 2004.

    下載圖示 校內:2016-08-01公開
    校外:2016-08-01公開
    QR CODE