| 研究生: |
鄧宇倫 Deng, Yu-Luen |
|---|---|
| 論文名稱: |
探討運用交流電動力誘導粒子在微針尖陣列上的運動行為 Investigation of Particle Movement Induced by AC Electrokinetics inside Microchannel with Microneedle Array |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 微流體 、三維電極 、交流電動力學 、介電泳 |
| 外文關鍵詞: | microfluidics, 3-D electrode, AC electrokinetics, dielectrophoretics (DEP) |
| 相關次數: | 點閱:103 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在微流體系統中,以介電泳作用力操控流體或粒子一直是重要的課題,除了可以探索瞭解流體或粒子的運動行為外,也可延伸出許多的應用,如分離、濃縮樣品等。由文獻可知,絕大多數產生介電泳的電極設計仍是以二維平面電極為主,然而介電泳作用力的大小和電場強度平方的梯度成正比,遠離電極表面處的電場強度急劇衰減,故有許多團隊透過製作三維圓柱陣列電極使電場能夠覆蓋整個流道空間,減少介電泳作用力的衰減。本研究提出以矽晶圓為基材製作微針尖陣列濺鍍導電金屬層當作電極和ITO電極組成三維電極對來操控螢光粒子。實驗結果顯示,在較低粒子濃度下塗佈PDMS的針尖陣列電極在開啟交流電後的螢光粒子聚集效果較佳,在10秒鐘裡針尖處的螢光強度即達到最大值。隨著頻率的降低,粒子受到交流電滲流(ACEO)的影響而加快移動速度並且在針尖附近產生旋轉的運動行為。當粒子濃度漸增,透過針尖電極與平面電極產生電場可以使螢光粒子聚集形成串珠結構。若使用針尖陣列電極,則可以形成大面積的串珠陣列;若是使用平面電極,則在表面任意位置形成密集的串珠叢,但是存在沒有串珠產生的空白區域。
In the microfluidic systems, AC electrokinetics has been a common strategy to manipulate the fluid flow and particle motion, which leads to various applications such as separation, sample concentration and so on. From the literature, most of the electrode pair fabricated is two dimensional. Since the dielectrophoretic (DEP) force is proportional to the gradient of the square of electric field, 3-D design could extend the electrodes into the microchannel and provide the electric field inside the entire microchannel. In this study, we used an array of microneedles along with ITO glass to form the 3-D electrode pairs. The results show that, at lower particle concentration, the fluorescent particles aggregate faster at the tips of microneedles and the fluorescent intensity reaches the maximum in 10 seconds when only the tip of microneedles is conductive. AC electro-osmotic flow is observed at the lower frequency. As the particle concentration increases, an array of the pearl chain-like structure can be formed. Although the pearl chain-like structure can be formed when using the plane electrode, the distribution is not uniform.
[1] A. Manz, et al., "MINIATURIZED TOTAL CHEMICAL-ANALYSIS SYSTEMS - A NOVEL CONCEPT FOR CHEMICAL SENSING," Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, Jan 1990.
[2] G. H. W. Sanders and A. Manz, "Chip-based microsystems for genomic and proteomic analysis," Trac-Trends in Analytical Chemistry, vol. 19, pp. 364-378, Jun 2000.
[3] H. A. Pohl, DI ELECTROPHORESIS THE BEHAVIOR OF NEUTRAL MATTER IN NONUNIFORM ELECTRIC FIELDS, 1978.
[4] K. Kaler and H. A. Pohl, "CONTINUOUS BIOLOGICAL CELL SEPARATION USING DIELECTROPHORESIS," Bulletin of the American Physical Society, vol. 23, pp. 285-285, 1978.
[5] I. Doh and Y. H. Cho, "A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process," Sensors and Actuators a-Physical, vol. 121, pp. 59-65, May 2005.
[6] H. Zhou, et al., "Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis," Journal of Colloid and Interface Science, vol. 285, pp. 179-191, May 2005.
[7] S. O. Lumsdon and D. M. Scott, "Assembly of colloidal particles into microwires using an alternating electric field," Langmuir, vol. 21, pp. 4874-4880, May 2005.
[8] R. Kretschmer and W. Fritzsche, "Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis," Langmuir, vol. 20, pp. 11797-11801, Dec 2004.
[9] K. H. Bhatt and O. D. Velev, "Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires," Langmuir, vol. 20, pp. 467-476, Jan 2004.
[10] K. D. Hermanson, et al., "Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions," Science, vol. 294, pp. 1082-1086, Nov 2001.
[11] K. R. Williams and R. S. Muller, "Etch rates for micromachining processing," Journal of Microelectromechanical Systems, vol. 5, pp. 256-269, Dec 1996.
[12] K. R. Williams, et al., "Etch rates for micromachining processing - Part II," Journal of Microelectromechanical Systems, vol. 12, pp. 761-778, Dec 2003.
[13] Z. Moktadir, et al., "Etching techniques for realizing optical micro-cavity atom traps on silicon," Journal of Micromechanics and Microengineering, vol. 14, pp. S82-S85, Sep 2004.
[14] A. Henssge and J. Acker, "Chemical analysis of acidic silicon etch solutions I. Titrimetric determination of HNO3, HF, and H2SiF6," Talanta, vol. 73, pp. 220-226, Sep 2007.
[15] D. B. Lee, "ANISOTROPIC ETCHING OF SILICON," Journal of Applied Physics, vol. 40, pp. 4569-&, 1969.
[16] H. Sasaki, et al., "Fabrication of densely arrayed Si needles with large height for transdermal drug delivery system application," Ieej Transactions on Electrical and Electronic Engineering, vol. 2, pp. 340-347, May 2007.
[17] P. H. Yih, et al., "A review of SiC reactive ion etching in fluorinated plasmas," Physica Status Solidi B-Basic Research, vol. 202, pp. 605-642, Jul 1997.
[18] R. Abdolvand and F. Ayazi, "An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon," Sensors and Actuators a-Physical, vol. 144, pp. 109-116, May 2008.
[19] H. Jansen, et al., "The black silicon method. VIII. A study of the performance of etching silicon using SF6/O-2-based chemistry with cryogenical wafer cooling and a high density ICP source," Microelectronics Journal, vol. 32, pp. 769-777, Sep 2001.
[20] S. Henry, et al., "Microfabricated microneedles: A novel approach to transdermal drug delivery," Journal of Pharmaceutical Sciences, vol. 87, pp. 922-925, Aug 1998.
[21] N. G. Green, et al., "Manipulation and trapping of sub-micron bioparticles using dielectrophoresis," Journal of Biochemical and Biophysical Methods, vol. 35, pp. 89-102, Sep 1997.
[22] H. Morgan, et al., "Separation of submicron bioparticles by dielectrophoresis," Biophysical Journal, vol. 77, pp. 516-525, Jul 1999.
[23] W. M. Arnold, "Particle patterning using fluidics and electric fields," Ieee Transactions on Dielectrics and Electrical Insulation, vol. 15, pp. 144-151, Feb 2008.
[24] A. Castellanos, et al., "Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws," Journal of Physics D-Applied Physics, vol. 36, pp. 2584-2597, Oct 2003.
[25] J. Kadaksham, et al., "Dielectrophoresis induced clustering regimes of viable yeast cells," Electrophoresis, vol. 26, pp. 3738-3744, Oct 2005.
[26] N. Aubry and P. Singh, "Control of electrostatic particle-particle interactions in dielectrophoresis," Europhysics Letters, vol. 74, pp. 623-629, May 2006.