簡易檢索 / 詳目顯示

研究生: 道阮恩漢
Dao, Nguyen-Ngoc-Han
論文名稱: 使用熔融鹽處理的氮化碳光催化碳酸氫鹽(水相CO2)還原成乙醛
Photocatalytic Reduction of Bicarbonate (Aqueous CO2) Into Acetaldehyde Using Molten-Salt Treated Carbon Nitride
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 39
中文關鍵詞: 光催化還原碳酸氫鹽(CO2 水溶液)聚庚嗪酰亞胺 (PHI)乙醛析氫
外文關鍵詞: Photocatalytic Reduction, Bicarbonate (aqueous CO2), Poly heptazine imide (PHI), Acetaldehyde, Hydrogen Evolution
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Summary I 抽象的 II ACKNOWLEDGEMENT III Table of Content IV List of Figure VI List of Table VII CHAPTER I: INTRODUCTION 1 1.1. Poly Heptazine IMIDE (PHI) 2 1.2. Bicarbonate (HCO3-) (Aqueous CO2) 2 1.3. Acetaldehyde 3 1.4. Chemical 4 1.5. Photocatalytic Hydrogen Evolution 5 1.6. Photocatalytic Reduction of Bicarbonate (Aqueous CO2) 5 1.7. Characterization and physical measurements. 7 CHAPTER 2: PRINCIPLE OF ANALYTICAL INSTRUMENTS 8 2.1. Transmission Electron Microscope (TEM) 8 2.2 Scanning electron microscope (SEM) 8 2.3 Photoelectron spectroscopy in the ultraviolet and X-ray ranges (X-ray Photoelectron Spectroscopy, XPS & Ultraviolet Photoelectron Spectroscopy, UPS) 9 2.4 X-ray photoelectron spectroscopy (XPS) 10 2.5 Infrared Fourier Transform Spectroscopy (Fourier Transform Infrared Spectroscopy, FT-IR) 10 2.6 UV-Visible Spectrophotometer 11 2.7 Photographic Spectrometer (Photoluminescence, PL) 13 2.8. X-ray diffraction (XRD) 13 2.9. EPR (Electron Paramagnetic Resonance Spectrometer) 14 2.10. Liquid chromatography mass spectrometry (LC-MS) 16 CHAPTER 3: Results and discussion 17 3.1 Scanning electron microscope (SEM) 17 3.2 Transmission electron microscope (TEM) 17 3.3 X-RAY diffraction 18 3.4 Infrared Fourier Transform Spectroscopy (Fourier Transform Infrared Spectroscopy, FT-IR) 20 3.5 Ultraviolet-visible absorption spectrum (UV-vis) analysis 21 3.6 Photoluminescence (PL) spectra analysis 23 3.7 Effect of pH value to photocatalytic solution 24 3.8 Apparent Quantum Yield (AQY) analysis 25 3.9 Photocatalytic H2 evolution and mechanism 29 3.10. Photocatalytic Reduction BicarbonateH2 (Aqueous CO2) 30 3.11. Color Changing in Photocatalytic hydrogen evolution 32 3.12. Color Changing in Photocatalytic reduction of bicarbonate (aqueous CO2) 34 CHAPTER 4: CONCLUSION 35 REFERENCES 36

    1.11 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light Nat. Mater, 2008, (8), 76–80.
    2. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci, 2017, (391), 72–123.
    3. W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev,2016, (116),7159–7329.
    4. M.Z. Rahman, C.B. Mullins, Understanding charge transport in carbon nitride for enhanced photocatalytic solar fuel production, Acc. Chem. Res, 2019, (52), 248–257.
    5.V.W.H. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M.B. Mesch, V. Duppel, J. Senker, V. Blum, B.V. Lotsch, Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites, Nat. Commun, 2016, 7 (12165), 1–10.
    6. V.W.H. Lau, D. Klose, H. Kasap, F. Podjaski, M.C. Pigni´e, E. Reisner, G. Jeschke, B. V. Lotsch, Dark photocatalysis: storage of solar energy in carbon nitride for time-delayed hydrogen generation, Angew. Chem. Int. Ed, 2017, (56) 510–514.
    7. A.J. Rieth, Y. Qin, B.C.M. Martindale, D.G. Nocera, Long-lived triplet excited state in a heterogeneous modified carbon nitride photocatalyst, J. Am. Chem. Soc, 2021, (143), 4646–4652.
    8. H. Ou, C. Tang, X. Chen, M. Zhou, X. Wang, Solvated electrons for photochemistry syntheses using conjugated carbon nitride polymers, ACS Catal, 2019, (9), 2949–2955.
    9. S. Mazzanti, A. Savateev, Emerging concepts in carbon nitride organic photocatalysis, ChemPlusChem, 2020, (85), 2499–2517.
    10. Z. Chen, A. Savateev, S. Pronkin, V. Papaefthimiou, C. Wolff, M.G. Willinger, E. Willinger, D. Neher, M. Antonietti, D. Dontsova, “The easier the better” preparation of efficient photocatalysts-metastable poly(heptazine imide) salts, Adv. Mater, 2017, 29 (1–8), 1700555.
    11. I. Krivtsov, D. Mitoraj, C. Adler, M. Ilkaeva, M. Sardo, L. Mafra, C. Neumann, A. Turchanin, C. Li, B. Dietzek, R. Leiter, J. Biskupek, U. Kaiser, C. Im, B. Kirchhoff, T. Jacob, R. Beranek, Water-soluble polymeric carbon nitride colloidal nanoparticles for highly selective quasi-homogeneous photocatalysis, Angew. Chem. Int. Ed, 2020, (59), 487–495.
    12. Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci. 2017, (392), 658−686.
    13. Zeng, S.; Kar, P.; Thakur, U. K.; Shankar, K. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnology, 2018, (29), 052001.
    14. Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol., C, 2015, (24), 16−42.
    15. Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics, 2012, (6), 511.
    16. Gust, D.; Moore, T. A.; Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res, 2009, (42), 1890−1898.
    17. Zhang, T.; Lin, W. Metal−organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, (43), 5982− 5993.
    18. Hao, Y.; Steinfeld, A. Fuels from water, CO2 and solar energy. Sci. Bull. 2017, 62, 1099−1101.
    19. Cohen, M. L. Calculation of Bulk Moduli of Diamond and Zincblende Solids. Phys. Rev. B, 1985, (32), 7988−7991.
    20 Liu, A. Y.; Cohen, M. L. Prediction of New Low Compressibility Solids. Science, 1989, 245, 841−842
    21. Wang, X.; Blechert, S.; Antonietti, M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal, 2012, 2, 1596−1606
    22. Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T. Which Is an Intermediate Species for Photocatalytic Conversion of CO2 by H2O as the Electron Donor: CO2 Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions? J. Phys. Chem. C, 2017, (121), 8711−8721
    23. H. Roques, Fondements théoriques du traitement chimique des eaux, Technique et Documentation-Lavoisier, 1990, Vols. I, II, 904 pp.
    24. N.P. Berezina, N.P. Gnusin, O.A. Demina, S. Timofeev, Water electrotransport in membrane systems: experimental and model description, J. Membr. Sci, 1994, (86), 207–229.
    25. M. Uebelacker, Dirk W. Lachenmeier, "Quantitative Determination of Acetaldehyde in Foods Using Automated Digestion with Simulated Gastric Fluid Followed by Headspace Gas Chromatography", Journal of Analytical Methods in Chemistry, 2011, (13)
    26. J. Albero, Yong Peng, and Hermenegildo García, ACS Catalysis 2020 10 (10), 5734-5749
    27. U.S Energy Information Administration. https://www.eia.gov/
    28. Jouny, M.; Luc, W.; Jiao, F. General Techno-Economic Analysis of CO2 Electrolysis Systems. Ind. Eng. Chem. Res. 2018, (57), 2165− 2177.
    29. Z. Zeng, X. Quan, H. Yu, S. Chen, Y. Zhang, H. Zhao, S. Zhang, Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis, Appl. Catal. B Environ, 2018, (236), 99–106.
    30. ] K. Akaike, K. Aoyama, S. Dekubo, A. Onishi, K. Kanai, Characterizing electronic structure near the energy gap of graphitic carbon nitride based on rational interpretation of chemical analysis, Chem. Mater, 2018, (30) 2341–2352.
    31. V.W.H. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M.B. Mesch, V. Duppel, J. Senker, V. Blum, B.V. Lotsch, Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites, Nat. Commun, (2016), 7 (12165), 1–10
    32. H. Schlomberg, J. Kroger, ¨ G. Savasci, M.W. Terban, S. Bette, I. Moudrakovski, V. Duppel, F. Podjaski, R. Siegel, J. Senker, R.E. Dinnebier, C. Ochsenfeld, B. V. Lotsch, Structural insights into poly(heptazine imides): a light-storing carbon nitride material for dark photocatalysis, Chem. Mater, 2019, (31) 7478–7486.
    33. ] Y. Xu, C. Qiu, X. Fan, Y. Xiao, G. Zhang, K. Yu, H. Ju, X. Ling, Y. Zhu, C. Su, K+- induced crystallization of polymeric carbon nitride to boost its photocatalytic activity for H2 evolution and hydrogenation of alkenes, Appl. Catal. B Environ, 2020, (268), 118457.
    34. L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis, ACS Catal, 2016, (6), 3921–3931.
    35. J. Yuan, X. Liu, Y. Tang, Y. Zeng, L. Wang, S. Zhang, T. Cai, Y. Liu, S. Luo, Y. Pei, C. Liu, Positioning cyanamide defects in g-C3N4: engineering energy levels and active sites for superior photocatalytic hydrogen evolution, Appl. Catal. B Environ, 2018, (237), 24–31.
    36. D.B. Nimbalkar, P.V.R.K. Ramacharyulu, S.R. Sahoo, J.-R. Chen, C.-M. Chang, A. N. Maity, S.-C. Ke, Dual roles of [NCN]2- on anatase TiO2: a fully occupied molecular gap state for direct charge injection into the conduction band and an interfacial mediator for the covalent formation of heterostructured g-C3N4/a-TiO2 nanocomposite, Appl. Catal. B Environ, 2020, 237, (1-10), 119036.
    37. H. Ou, C. Tang, X. Chen, M. Zhou, X. Wang, Solvated electrons for photochemistry syntheses using conjugated carbon nitride polymers, ACS Catal. 2019, (9), 2949–2955.
    38. I. Krivtsov, D. Mitoraj, C. Adler, M. Ilkaeva, M. Sardo, L. Mafra, C. Neumann, A. Turchanin, C. Li, B. Dietzek, R. Leiter, J. Biskupek, U. Kaiser, C. Im, B. Kirchhoff, T. Jacob, R. Beranek, Water-soluble polymeric carbon nitride colloidal nanoparticles for highly selective quasi-homogeneous photocatalysis, Angew. Chem. Int. Ed, 2020, (59), 487–4

    無法下載圖示 校內:2028-01-19公開
    校外:2028-01-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE