| 研究生: |
張維苓 Chang, Wei-Ling |
|---|---|
| 論文名稱: |
304不鏽鋼在大平均應變下循環平均應力鬆弛及定平均應力下循環應力衍生之蠕變-內涵時間循環塑性理論之預測 304SS Cyclic Mean Stress Relaxation under Large Mean Strain and Ratcheting induced by Cyclic Stress with Constant Mean Stress - Prediction by Endochronic Cyclic Plasticity. |
| 指導教授: |
李超飛
Li, Chao-Fei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 304 不鏽鋼 、內涵時間塑性理論 、循環應變振幅大帄均應變 、循 環應力下之增量型式內涵時間本構方程式 、蠕變 |
| 外文關鍵詞: | 304 Stainless Steel, Endochronic plasticity, Large mean strain, Incremental form of Endochronic theory under cyclic stressing, Ratcheting |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以內涵時間塑性理論依照Kang 等人對304 不鏽鋼於室溫298K,
應變率 之單軸循環拉伸數據為對象,以核心函數建立在定溫不同應變振幅
下穩態循環應力-應變曲線,決定出拉伸應力-應變曲線及材料函數在定應變振幅 使用循環應變下之增量型式內涵時間本構方程式,計算出在循環應變振幅大帄均應變為0%、3%、5%、7%、10%、15%之應力振幅反應,並與實驗數據預測結果相當吻合,且利用內涵時間塑性理論可得其平均應力隨循環圈數增加而鬆弛至幾乎為零情形。
利用循環應力下之增量型式內涵時間本構方程式求得定帄均應力
m σ =10MPa 下循環應力a σ =260,280,300,350(MPa)衍生之蠕變,本文提議蠕變率對循環圈數方程式以 σ =350(MPa)為基準可推得一通式預測其他應力振幅下對應之蠕變值與實驗數據比較,其結果十分接近。
On the basis of Endochronic plasticity, this thesis integrates the experimental data from Kang's uniaxial cyclic tensile data which uses 304 stainless steel at room temperature to determine the kernel function and then to establish the steady-state cyclic stress - strain curve under different strain amplitudes. After these, the material function corresponding to the tensile stress - strain curves can be determined.
The Incremental form of Endochronic plasticity under cyclic straining is employed to calculate the values of stress amplitude under constant strain amplitude 0.5% with varied mean strains ( 0%, 3%, 5 %, 7%, 10%,15%).The results computed can predict those values of stress amplitude under
large mean strain condition very well, the computational results can also find that cyclic mean stress decreases to almost zero as the number of cycles increased.
The Incremental form of Endochronic plasticity under cyclic stressing is also applied to investigate the ratcheting mean strain under m σ =10MPa with varied stress amplitudes a σ =260,280,300,350(MPa) .Based on ratcheting strain data under a m σ =350,,a ratcheting rate equation is proposed to predict the values of ratcheting of all loading conditions. The results computed are very close to the experiment data.
[1] Valanis, K. C., 「A Theory of Viscoplasticity Without a Yield Surface Part І. General Theory, 」 Archives of Mechanics, pp.517-533,1971.
[2] Valanis, K. C., 「Fundamental Consequences of a New Intrinsic Time Measure : Plasticity as a Limit of The Endochronic Theory,」 Archives of Mechanics, Vol. 32, pp.171-191, 1980.
[3] Lee,C. F., 「A Simple Endochronic Creep Modeling and Its
Computional Implementation,」 The Chinese J. Mechanics,
Vol.7,No.1, pp. 21-32 (1991).
[4] Lee, C. F.,「Numerical Method of The Incremental Endochronic Plasticity」, The Chinese Journal of Mechanics, Vol.8, No.4, pp. 377-396, 1992
[5] Lee, C. F., and Chen,Y. C., 「Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy, 」J. Mechanics, 23, pp. 443-444(2007).
[6] Manson.S.S., Halford.G.R., Nachtigll A.C.,」Separation of The Strain Components For Use In Strainrange Partitioning」,Advances in Design for Elevated Temperature Environment ed.S.Y.Zamrik,R.I.Jetter, 196 ASME,pp.17-28,1975.
[7] Guo,C.S.and Lee,C.F.,「 Endochronic Creep Modeling and its FEM Applications,」 Proceedings of the 12th National Conference Theoretical and Applied Mechanics, Taiwan , R.O.C., pp.361-374,1988
[8] Xia .Z..,「Effect of Mean Stress and Ratcheting Strain of Fatigue Life of Steel」Int.J.Fatigue Vol.18.No.5.pp.335-342
72
[9] Date, S., Ishikawa, H., Otani, T., and Takahashi,Y.,「Effect of Ratcheting Deformation on Fatigue and Creep-Fatigue Life of 316FR Stainless Steel,」 Nuclear Eng. Design, 238, pp.336-346(2006).
[10] Kang .G.Z.,Liu Y.,and Li Z.,「Experimental Study on Ratchetting-Fatigue Interaction of SS304 Stainless Steel in Uniaxial Cyclic Stressing,」 Materials Science and Engineering, A435-436, pp.396-404, 2006
[11] Lee,C. F., Shen,H. T., and Pen, W. T., 「A Unified Creep-Cyclic Plasticity Theory of Endochronic Viscoplasticity with Application in 304 Stainless Steel,」 The Chinese J. Mechanics, series A, 19, pp. 443-453 (2003).
[12] Lee,C. F.,「A Systematic Method of Determining Material Functions in Endochronic Plasticity ,」 The Chinese J. Mechanics, Vol.8, No.6, pp. 419-430 (1987).
[13] Lee, C. F. and Shieh, T. J., 「Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,」 Journal of Mechanics,Vol. 22, No.3, pp.181-191, 2006.
[14] Lee, C.F., 「A Simple Endochronic Transient Creep Model of Metals with Applications to Variable Temperature Creep,」 Int. J. Plasticity, 12, pp. 239-253 (1996).
[15] Valanis, K, C., and Lee, C.F., 「Some Recent Developments of the Endochronic Theory with Applications,」 Nuclear Eng. Design, 69, pp.327-344(1982).
[16] Chen, Zu., Yu, D. H., and Kim, K.S., 「Experimental Study on Ratcheting Behavior of Eutectic Tin-Lead Solder under Multiaxial
73
Loading,」 Mat.Science and Eng.,A406,pp.86-94(2005).
[17] Lee, C. F. and Chen, Y. C., 「Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy」, Journal of Mechanics, Vol. 23, No.4, pp. 433-444, 2007.
[18] Kanchanomai C., Miyashita Y., and Mutoh Y., 「Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solders 96.5Sn/3.5Ag,」 Journal of Electronic Materials, Vol. 31, pp. 142-151, 2002.
[19] Kanchanomai C., Miyashita Y. and Mutoh Y.「Influence of Frequcncy on Low Cycle Fatigue Behavior of Pb-free Solder 96.5Sn-3.5Ag,」Materials Science and Engineering, A345, pp.90-98, 2003
[20] 鄭詩螢,「Sn/3.5Ag銲錫含頻率效應之疲勞初始壽命預估-
含損傷內涵時間黏塑性理論之應用」,碩士論文-國立成功大學工程科學系,2010.