簡易檢索 / 詳目顯示

研究生: 謝蓉
Hsieh, Jung
論文名稱: 絲裂原活化蛋白激酶訊號以及活性氧化物質參與微生物揮發性氣味誘導的氣孔免疫
Involvement of MAPK Signaling and ROS production in Microbial Volatiles Compound-induced Stomatal Immunity
指導教授: 黃浩仁
Huang, Hao-Jen
共同指導教授: 張文綺
Chang, Wen-Chi
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 細菌揮發性有機化合物絲裂原活化蛋白激酶途徑活性氧化物氣孔免疫胞內鹼化反應
外文關鍵詞: Bacterial volatile organic compounds (bVOCs), Mitogen-activated protein kinase (MAPK) cascades, Reactive oxygen species (ROS), Stomatal movement, Virus-induced gene silence (VIGS), Cytosolic alkalinization
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物是一種固著性的生物,因此面對環境中持續不斷的生物性或非生物性刺激 時,必須迅速的啟動相關機制去應對。其中,氣孔是植物進行光合作用以及促進水 分運輸的重要通道,而微生物病原菌也藉由氣孔作為入侵的管道,進而感染植物, 為了防止病原菌的入侵,植物利用模式辨識受體 (PRR) 來感知具保守性的微生物分 子表徵,並且展開一系列的防禦反應,引發模式誘導免疫反應 (PTI),關閉氣孔以減 緩病原菌入侵的速度 先前的研究顯示活性氧化物 (ROS) 和氧化氮 (NO) 的累積以及 鈣離子和植物賀爾蒙參與在植物的氣孔免疫中。在本研究中,我們想探討由細菌揮 發性氣味 (bVOCs) 所誘導植物氣孔免疫反應。從實驗結果發現 Enterobacter aerogenes會抑制阿拉伯芥與圓葉菸草的生長、造成活性氧化物 (ROS) 的累積以及胞 內鹼化反應,誘發氣孔關閉 我利用T-DNA插入的阿拉伯芥突變株和病毒誘導基因 靜默的VIGS圓葉菸草來了解其分子機制,發現由細菌氣味誘導的ROS累積以及胞內 鹼化反應造成氣孔關閉是透過ABA生合成路徑和MAPK訊息傳遞調控,促使植物產 生防禦反應,並且誘發植株的先天性免疫訊息傳遞途徑,藉此抵抗細菌揮發性氣味 的衝擊。在菸草中我們也發現NbMKK1參與在此細菌誘導的氣孔免疫中。由實驗結 果可知由細菌氣味誘導的ROS累積以及胞內鹼化反應會造成氣孔關閉,且其分子機 制是透過ABA生合成路徑和MAPK訊息傳遞所調控。

    As sessile organisms, plants have developed sensitive, fast, and effective ways to contend with environmental changes. And stomata have been shown to play an important role to regulate plant gas exchange and transpiration. Being pores, stomata constitute a natural entry site for potentially harmful microbes. To prevent microbial invasion, stomata close upon perception of pattern recognition receptors (PRR). The signaling pathways leading to stomatal closure triggered by PAMP triggered immunity (PTI) employ several common components, such as reactive oxygen species (ROS), nitric oxide (NO), calcium, kinases, and hormones. In this study, we explore the molecular mechanism of stomatal immunity triggered by bacterial volatile organic compounds (bVOCs) emitted from Enterobacter aerogenes. I found that the growth is inhibited in both Arabidopsis thaliana and Nicotiana benthamiana. Furthermore, I used the T-DNA insert mutants of Arabidopsis thaliana and virus-induced gene silencing (VIGS) technique in tobacco to investigate the molecular mechanism of stomatal immunity triggered by bVOCs. The results indicated that ROS accumulation and cytosolic alkalization induced by bVOCs cause stomatal closures in Arabidopsis. NbMKK1 involved in the defense response that mediated the stomatal closure in tobacco. Thus, I suggested that the bVOCs can trigger the ROS accumulation and cytosolic alkalization mediated by MAPK- and ABA-dependent stomatal immunity.

    摘要 1 Abstract 2 英文延伸摘要 3 誌謝 6 目錄 7 圖目錄 10 縮寫對照表 12 壹、前言 13 一、細菌揮發性氣味 (bVOCs) 對植物之影響 13 二、植物先天性免疫 (Plant innate immunity) 14 三、植物氣孔免疫(Stomatal immunity) 16 四、絲裂原活化蛋白激酶訊息傳遞途徑 (MAPK signaling transduction pathway) 17 五、病毒誘導基因靜默 (Virus-induced gene silencing) 19 六、研究目的 21 貳、材料方法 22 一、 植株培養 (Plant material and cultivation) 22 (一) 無菌組織培養 (Plant tissue culture) 22 二、 菌種保存與培養 (Bacteria culture and stock preparation) 22 (一) 保菌 (Preparation bacteria stock) 23 (二) 細菌 Enterobacter aerogenes 培養 (Bacteria culture) 23 三、 植物與細菌揮發性氣味共培養 (Co-cultivation of plant and bacterial volatiles) 24 (一) E. aerogenes 揮發性物質與植物共培養 (Plant co-culture with E. aerogenes volatiles) 24 四、 細菌揮發物對植物影響之生理生化分析 (Physiological and biochemical analysis) 24 (一) 葉片組織的過氧化物染色 (NBT staining and DAB staining) 24 (二) 葉下表皮氣孔觀察 (Stomata observation) 25 (三) 保衛細胞內活性氧化物質的螢光染色 (CM-H2DCFDA staining) 25 (四) 保衛細胞內鹼化反應 (Cytosolic alkalinization) 25 (五) 保衛細胞內氧化氮的累積 (NO accumulation test) 25 五、 基因表現量分析 (RT-PCR and qRT-PCR analysis) 26 (一) RNA 萃取 (RNA extraction) 26 (二) RNA 濃度定量 (Nucleic acid quantitative analysis) 27 (三) 反轉錄作用 (Reverse Transcription, RT-PCR) 27 (四) 聚合酶鏈鎖反應 (Polymerase Chain Reaction, PCR) 28 (五) 瓊脂膠體電泳 (Gel electrophoresis) 28 (六) 即時定量聚合酶鏈鎖反應 (Real-time Quantitative Polymerase Chain Reaction, RT-qPCR) 28 六、 病毒誘導基因靜默轉殖株製作 (Virus-induced gene silencing assays) 29 (一) VIGS 農桿菌接種 (VIGS inoculation) 29 (二) VIGS 植株培養 (VIGS plant cultivation) 30 參、結果 31 一、 微生物揮發性氣味對阿拉伯芥之影響與生理反應 31 (一) bVOCs 對於阿拉伯芥之外表型影響 31 (二) bVOCs 能影響不同植株之氣孔開合程度 32 (三) bVOCs 能誘導MAPK相關基因表現量 33 (四) bVOCs 能誘導阿拉伯芥葉片產生活性氧化物的累積 33 (五) bVOCs 能誘發造成細胞內的鹼化反應 34 (六)誘導氣孔變化的bVOC並不是二氧化碳 35 二、 細菌揮發性氣味對阿拉伯芥突變株之影響與生理分析 36 (一) 阿拉伯芥RBOH突變株在細菌揮發性氣味影響下之氣孔開閉程度 36 (二) 阿拉伯芥ABA突變株在細菌揮發性氣味影響下之氣孔開閉程度 36 (三) 阿拉伯芥MAPK突變株在細菌揮發性氣味影響下之氣孔開閉程度 36 (四) NbMKK1 靜默後之外表型與其內源性轉錄本之基因表現量 37 (五) NbMKK1 靜默植株於 bVCs 處理後能影響葉氣孔開合程度 37 (六) 阿拉伯芥突變株在細菌揮發性氣味影響下之葉片中超氧離子的累積 37 (七) 阿拉伯芥RBOH突變株在細菌揮發性氣味影響下之氣孔之ROS累積量 38 (八) 阿拉伯芥ABA突變株在細菌揮發性氣味影響下之保衛細胞ROS累積量 38 (九) 阿拉伯芥MAPK突變株在細菌揮發性氣味影響下之保衛細胞ROS累積量 38 (十) 阿拉伯芥RBOH突變株在細菌揮發性氣味影響下之胞內鹼化程度 39 (十一) 阿拉伯芥ABA突變株在細菌揮發性氣味影響下之胞內鹼化程度 39 (十二) 阿拉伯芥MAPK突變株在細菌揮發性氣味影響下之胞內鹼化程度 40 肆、討論 40 一、 細菌揮發性氣味 (bVOCs) 能誘發植株的氣孔免疫反應 40 (一) bVOCs 對阿拉伯芥之生理影響與啟動氣孔免疫 40 (二) 細菌揮發性氣味能誘發阿拉伯芥中的保衛細胞胞內鹼化反應 41 (三) MAPK 訊息傳遞途徑參與在bVOCs 誘發的氣孔免疫 42 三、 結論 43 參考文獻 45 結果圖表 50 附錄 78

    Adams-Phillips, L., Briggs, A. G., & Bent, A. F. (2010). Disruption of poly (ADP-ribosyl) ation mechanisms alters responses of Arabidopsis to biotic stress. Plant physiology, 152(1), 267-280.
    Agurla, S., Gayatri, G., & Raghavendra, A. S. (2017). Signal transduction components in guard cells during stomatal closure by plant hormones and microbial elicitors. Mechanism of Plant Hormone Signaling under Stress, 2, 353-387.
    Andreasson, E., & Ellis, B. (2010). Convergence and specificity in the Arabidopsis MAPK nexus. Trends in plant science, 15(2), 106-113.
    Arnaud, D., & Hwang, I. (2015). A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Molecular plant, 8(4), 566-581.
    Aslam, S. N., Newman, M.-A., Erbs, G., Morrissey, K. L., Chinchilla, D., Boller, T., . . . Molinaro, A. (2008). Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Current Biology, 18(14), 1078-1083.
    Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant physiology, 134(1), 307-319.
    Becker, A., & Lange, M. (2010). VIGS–genomics goes functional. Trends in plant science, 15(1), 1-4.
    Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327-1350.
    Bitas, V., McCartney, N., Li, N., Demers, J., Kim, J.-E., Kim, H.-S., . . . Kang, S. (2015). Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Frontiers in microbiology, 6, 1248.
    Blomster, T., Salojärvi, J., Sipari, N., Brosché, M., Ahlfors, R., Keinänen, M., . . . Kangasjärvi, J. (2011). Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant physiology, 157(4), 1866-1883.
    Chater, C., Peng, K., Movahedi, M., Dunn, J. A., Walker, H. J., Liang, Y.-K., . . . Wilson, I. (2015). Elevated CO2-induced responses in stomata require ABA and ABA signaling. Current Biology, 25(20), 2709-2716.
    Davin-Regli, A. (2015). Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in microbiology, 6, 392.
    Desikan, R., Last, K., Harrett‐Williams, R., Tagliavia, C., Harter, K., Hooley, R., . . . Neill, S. J. (2006). Ethylene‐induced stomatal closure in Arabidopsis occurs via AtrbohF‐mediated hydrogen peroxide synthesis. The Plant Journal, 47(6), 907-916.
    Eisele, J. F., Fäßler, F., Bürgel, P. F., & Chaban, C. (2016). A rapid and simple method for microscopy-based stomata analyses. PloS one, 11(10), e0164576.
    Endo, M., Shimizu, H., & Araki, T. (2016). Rapid and simple isolation of vascular, epidermal and mesophyll cells from plant leaf tissue. Nature protocols, 11(8), 1388.
    Förster, S., Schmidt, L. K., Kopic, E., Anschütz, U., Huang, S., Schlücking, K., . . . Batistič, O. (2019). Wounding-Induced Stomatal Closure Requires Jasmonate-Mediated Activation of GORK K+ Channels by a Ca2+ Sensor-Kinase CBL1-CIPK5 Complex. Developmental cell, 48(1), 87-99. e86.
    Fischer, R. (1968). Stomatal opening in isolated epidermal strips of Vicia faba. I. Response to light and to CO2-free air. Plant physiology, 43(12), 1947-1952.
    Galletti, R., De Lorenzo, G., & Ferrari, S. (2009). Host-derived signals activate plant innate immunity. Plant signaling & behavior, 4(1), 33-34.
    Gayatri, G., Agurla, S., Kuchitsu, K., Anil, K., Podile, A. R., & Raghavendra, A. S. (2017). Stomatal closure and rise in ROS/NO of Arabidopsis guard cells by tobacco microbial elicitors: Cryptogein and Harpin. Frontiers in plant science, 8, 1096.
    Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424(6951), 901.
    Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., . . . Wilson, C. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in plant science, 7(7), 301-308.
    Jagodzik, P., Tajdel-Zielińska, M., Cieśla, A., Marczak, M., & Ludwikow, A. (2018). Mitogen-activated protein kinase cascades in plant hormone signaling. Frontiers in plant science, 9, 1387.
    Khokon, M. A. R., Okuma, E., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., . . . Murata, Y. (2011). Involvement of extracellular oxidative burst in salicylic acid‐induced stomatal closure in Arabidopsis. Plant, cell & environment, 34(3), 434-443.
    Kwak, J. M., Mori, I. C., Pei, Z. M., Leonhardt, N., Torres, M. A., Dangl, J. L., . . . Schroeder, J. I. J. T. E. j. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS‐dependent ABA signaling in Arabidopsis. 22(11), 2623-2633.
    Lim, C., Baek, W., Jung, J., Kim, J.-H., & Lee, S. (2015). Function of ABA in stomatal defense against biotic and drought stresses. International journal of molecular sciences, 16(7), 15251-15270.
    Lv, S., Zhang, Y., Li, C., Liu, Z., Yang, N., Pan, L., . . . Lv, Y. (2018). Strigolactone‐triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid‐independent manner. New Phytologist, 217(1), 290-304.
    Marino, D., Dunand, C., Puppo, A., & Pauly, N. (2012). A burst of plant NADPH oxidases. Trends in plant science, 17(1), 9-15.
    Merilo, E., Laanemets, K., Hu, H., Xue, S., Jakobson, L., Tulva, I., . . . Broschè, M. (2013). PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant physiology, 162(3), 1652-1668.
    Morales, J., Kadota, Y., Zipfel, C., Molina, A., & Torres, M.-A. (2016). The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. Journal of experimental botany, 67(6), 1663-1676.
    Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., . . . Sano, S. (2012). Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nature communications, 3, 926.
    Ooi, L., Matsuura, T., Munemasa, S., Murata, Y., Katsuhara, M., Hirayama, T., & Mori, I. C. (2019). The mechanism of SO2‐induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells. Plant, cell & environment, 42(2), 437-447.
    Pitzschke, A., Djamei, A., Bitton, F., & Hirt, H. (2009). A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling. Molecular plant, 2(1), 120-137.
    Pitzschke, A., Schikora, A., & Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Current opinion in plant biology, 12(4), 421-426.
    Qi, J., Wang, J., Gong, Z., & Zhou, J.-M. (2017). Apoplastic ROS signaling in plant immunity. Current opinion in plant biology, 38, 92-100.
    Ribeiro, D. M., Desikan, R., Bright, J., Confraria, A., Harrison, J., Hancock, J. T., . . . Wilson, I. D. (2009). Differential requirement for NO during ABA‐induced stomatal closure in turgid and wilted leaves. Plant, cell & environment, 32(1), 46-57.
    Robinson, M. J., & Cobb, M. H. (1997). Mitogen-activated protein kinase pathways. Current opinion in cell biology, 9(2), 180-186.
    Salam, M., Jammes, F., Hossain, M., Ye, W., Nakamura, Y., Mori, I., . . . Murata, Y. (2013). Two guard cell‐preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells. Plant Biology, 15(3), 436-442.
    Sawinski, K., Mersmann, S., Robatzek, S., & Böhmer, M. (2013). Guarding the green: pathways to stomatal immunity. Molecular plant-microbe interactions, 26(6), 626-632.
    Sierla, M., Waszczak, C., Vahisalu, T., & Kangasjärvi, J. (2016). Reactive oxygen species in the regulation of stomatal movements. Plant physiology, 171(3), 1569-1580.
    Su, J., Zhang, M., Zhang, L., Sun, T., Liu, Y., Lukowitz, W., . . . Zhang, S. (2017). Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. The Plant Cell, 29(3), 526-542.
    Suhita, D., Raghavendra, A. S., Kwak, J. M., & Vavasseur, A. (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate-and abscisic acid-induced stomatal closure. Plant physiology, 134(4), 1536-1545.
    Takahashi, Y., Nasir, K. H. B., Ito, A., Kanzaki, H., Matsumura, H., Saitoh, H., . . . Terauchi, R. (2007). A high‐throughput screen of cell‐death‐inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1‐induced cell death signaling and non‐host resistance to Pseudomonas cichorii. The Plant Journal, 49(6), 1030-1040.
    Wu, L., Li, X., Ma, L., Borriss, R., Wu, Z., & Gao, X. (2018). Acetoin and 2, 3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. Journal of experimental botany, 69(22), 5625-5635.
    Wu, P.-H., Ho, Y.-L., Ho, T.-S., Chang, C.-H., Ye, J.-C., Wang, C.-H., . . . Liu, C.-C. (2019). Microbial volatile compounds-induced cytotoxicity in the yeast Saccharomyces cerevisiae: The role of MAPK signaling and proteasome regulatory pathway. Chemosphere.
    Xu, J., Xie, J., Yan, C., Zou, X., Ren, D., & Zhang, S. (2014). A chemical genetic approach demonstrates that MPK 3/MPK 6 activation and NADPH oxidase‐mediated oxidative burst are two independent signaling events in plant immunity. The Plant Journal, 77(2), 222-234.
    Ye, W., Adachi, Y., Munemasa, S., Nakamura, Y., Mori, I. C., & Murata, Y. (2015). Open stomata 1 kinase is essential for yeast elicitor-induced stomatal closure in Arabidopsis. Plant and Cell Physiology, 56(6), 1239-1248.
    Yin, Y., Adachi, Y., Ye, W., Hayashi, M., Nakamura, Y., Kinoshita, T., . . . Murata, Y. (2013). Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata. Plant physiology, 163(2), 600-610.
    Zhang, L., Shi, X., Zhang, Y., Wang, J., Yang, J., Ishida, T., . . . Wang, X. (2019). CLE9 peptide‐induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant, cell & environment, 42(3), 1033-1044.
    Zhang, X., Mi, X., Chen, C., Wang, H., & Guo, W. (2018). Identification on mitogen-activated protein kinase signaling cascades by integrating protein interaction with transcriptional profiling analysis in cotton. Scientific reports, 8(1), 8178.

    下載圖示 校內:2024-08-16公開
    校外:2024-08-16公開
    QR CODE