簡易檢索 / 詳目顯示

研究生: 江曜廷
Chiang, Yao-Ting
論文名稱: 套管式離岸風機於極端環境條件之極限負載分析與設計
Ultimate Load Analysis and Design of the Jacket-Type Offshore Wind Turbine under Extreme Environmental Conditions
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 93
中文關鍵詞: 套管式離岸風機極值分析颱風設計負載組合極限負載設計用鋼量
外文關鍵詞: Jacket-type offshore wind turbine, extreme value analysis, typhoons, design load cases, ultimate loads, total design steel weights
相關次數: 點閱:155下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於台灣位於太平洋颱風多發地區,離岸風機場址設計條件應包含颱風事件之考量。本研究針對套管式離岸風機於極端環境條件下進行極限負載分析以及支撐結構最佳化設計。為探究離岸場址之環境特性,本研究選用新竹浮標測站與外埔潮位測站之實測資料作為初步分析之依據,並分別參考IEC 61400-3與GL Tropical Cyclone Technical Note規範之要求決定出外部條件與設計負載組合。氣動力負載計算方面,分別採用美國國家再生能源實驗室(NREL)所開發之Turbsim與FAST v8軟體來模擬隨機紊流風場以及分析NREL 5-MW離岸參考風機之動力反應。水動力負載則採用Morison’s equation來計算波浪與海流於支撐結構之作用力,其中流體粒子速度與加速度依據Stream function wave theory與Second-order kinematics model計算求得。經由有限元素分析後,討論規範中各設計負載組合之極限負載結果與各支撐桿件之受力情形,並依據API RP 2A-LRFD鋼結構設計規範進行支撐結構最佳化設計,計算出支撐結構所需之總用鋼量,可作為工程造價估算之參考。電腦輔助分析程式由 朱聖浩教授研究團隊所開發,分析程式與研究成果皆為公開資源。

    Since there is high risk of typhoons for structural damage in Taiwan, the offshore site design conditions shall include the occurrence of typhoons. The objective of this thesis was to carry out ultimate load analysis and optimum design of a jacket-type support structure of an offshore wind turbine under extreme environmental conditions. To study the environmental characteristics of the offshore wind turbine site, we chose the environmental data measured at Hsinchu buoy station and Waipu tide station as the basis of preliminary analysis. The external conditions and the design load cases to be considered in this study were based on the requirements of IEC 61400-3 or GL Tropical Cyclone Technical Note. In the calculation of aerodynamic loads, TurbSim and FAST v8 software provided by National Renewable Energy Laboratory (NREL) were used to simulate stochastic inflow turbulence and to analyze the dynamic response of the NREL 5-MW offshore wind turbine, respectively. For hydrodynamic loads, the Morison’s equation was used to calculate the wave and current induced loads on the support structure, where fluid particle velocity and acceleration were obtained by using the stream function wave theory and the second-order kinematics model. After the finite element analysis, the results of the ultimate loads acting on the support structure for each design load case were discussed. Finally, we conducted the optimum design of the jacket-type support structure for evaluating total design steel weights by using the API RP 2A-LRFD standard, and the results may be used as the basis of construction cost estimation. Note that the computer programs developed by the research team of Shen-Haw Ju are open and free to use.

    摘要 I Abstract II Acknowledgement III Chapter 1 Introduction 1 1.1 Background and Purpose 1 1.2 Literature Review 2 1.3 Overview 5 Chapter 2 Environmental Data Analysis 8 2.1 Data for Extreme Value Analysis 9 2.1.1 Sources of Data 9 2.1.2 Method of Data Selection 10 2.2 Method of Extreme Value Analysis 11 2.2.1 Distribution Functions for Extreme Value 12 2.2.2 Estimating Parameters in Distribution Functions 13 2.2.3 Goodness of Fit Tests 17 2.2.4 Estimation of Return Value 19 2.3 Summary of the Results 20 2.3.1 Results of Extreme Wind Speed Analysis 20 2.3.2 Results of Extreme Water Level Analysis 24 2.3.3 Results of Significant Wave Height Analysis 29 Chapter 3 Environmental Conditions for Design 31 3.1 Wind Turbine Classes 31 3.2 Tropical Cyclone Classes and Terrain Categories 32 3.3 Wind Conditions 35 3.3.1 Wind Conditions according to IEC Standards 35 3.3.2 Wind Conditions according to GL Tropical Cyclone Technical Note 41 3.4 Marine Conditions 43 3.4.1 Waves 43 3.4.2 Sea Currents 50 3.4.3 Water Level 51 Chapter 4 Case Study and Result Discussion 53 4.1 Numerical Model of the Jacket Support Structure 53 4.2 Design Load Cases 56 4.2.1 Design Load Cases according to IEC 61400-3 56 4.2.2 Design Load Cases according to GL Tropical Cyclone Technical Note 62 4.3 Ultimate Load Analysis 64 4.4 Optimum Design of the Support Structure 72 Chapter 5 Conclusions 81 References 83 Appendix A 86 Appendix B 88

    [1]Goda, Y. (2010), Random seas and design of maritime structures (3rd ed.), World Scientific, Vol.33, pp.537-590
    [2]Guedes Soares, C. (1986), “Assessment of the uncertainty in visual observations of wave height”, Ocean Engineering 13 (1), pp.37-56.
    [3]Ferreira, J.A., Guedes Soares, C. (1998), “An application of the peaks over threshold method to predict extremes of significant wave height”, Journal of Offshore Mechanics and Arctic Engineering 120 (3), pp.165- 176.
    [4]Elsinghorst, C., Groeneboom, P., Jonathan, P., Smulders, L., Taylor, P.H. (1998), “Extreme value analysis of North Sea storm severity”, Journal of Offshore Mechanics and Arctic Engineering 120 (3), pp.177- 183.
    [5]Coastal engineering manual (2002), “Hydrodynamic analysis and design conditions,” Chapter 8.
    [6]Dean, R. G. (1972), “Application of Stream Function Wave Theory to Offshore Design Problems”, Fourth Annual Offshore Technology Conference, Houston, Texas, May.
    [7]Xiaobo Chen, Jing Li, and JianYun Chen (2014), “Nonlinear wave and currents loads analysis of offshore wind turbine.” KSCE Journal of Civil Engineering. Vol. 18, No. 6, pp.1877-1883.
    [8]Wu, Ting-Jiun, Huang, Chin-Cheng, Su, Wei-Nian (2015), “Comparison of Extreme Load Calculation between IEC and GL Offshore Wind Turbine Design Guideline Using NREL 5 MW Reference Offshore Wind Turbine”, Institute of Nuclear Energy Research.
    [9]Bae-sung Kim, Ji-won Jin, Olga Bitkina and Ki-weon Kang (2016), “Ultimate load characteristics of NREL 5-MW offshore wind turbines with different substructures,” International Journal of Energy Research.
    [10]IEC 61400-1 (2005), International Standard Wind turbines – Part 1: Design requirements (3rd ed.), International Electrotechnical Commission
    [11]IEC 61400-3 (2009), International Standard Wind turbines – Part 3: Design requirements for offshore wind turbines (1st ed.), International Electrotechnical Commission
    [12]GL Renewables Certification (2013), Certification of Wind Turbines for Tropical Cyclone Conditions. Technical Note, Germany
    [13]Tanja A. Winter et al. (2014), “Design and Assessment of Wind Turbines under
    Tropical Cyclone Conditions”, DNV GL, Hamburg, Germany
    [14]DNV-RP-C205 (2014), Environmental Conditions and Environmental Loads, Det Norske Veritas, Norway
    [15]DNV-OS-J101 (2014), Design of Offshore Wind Turbine Structures. Offshore Standard, Det Norske Veritas, Norway
    [16]DNVGL-ST-0437 (2016), Loads and site conditions for wind turbines, Det Norske Veritas, Norway
    [17]Jonkman, J. M., Buhl Jr., M. L. (2005), FAST User’s Guide, National Renewable Energy Laboratory, Technical Report NREL/EL-500-38230
    [18]J. Jonkman, S. Butterfield, W. Musial, and G. Scott (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Laboratory, Technical Report NREL/TP-500-38060
    [19]Jonkman, J. M. (2016), TurbSim User’s Guide v2.00.00, National Renewable Energy Laboratory, Technical Report
    [20]經濟部能源局,千架海陸風力機風力資訊整合平台。網址:
    http://www.twtpo.org.tw/
    [21]江玟德、張憲國、劉勁成、陳蔚瑋、何良勝(2013),「臺灣主要港口附近海域長期波浪統計特性及設計波推算之研究(4/4)」,交通部運輸研究所。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE