| 研究生: |
鄭嘉華 Cheng, Chia-Hua |
|---|---|
| 論文名稱: |
探討GCIP蛋白於人類惡性乳癌細胞MDA-MB-231中所扮演的角色 Investigate the role of GCIP in malignant human breast cancer cell MDA-MB-231 |
| 指導教授: |
張敏政
Ming-Chung, Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 侵入能力 、移行能力 |
| 外文關鍵詞: | invasion, GCIP, MDA-MB-231, migration, breast cancer |
| 相關次數: | 點閱:143 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乳癌細胞快速生長以及快速轉移至其他器官是造成致死率居高不下的主因。因此,研究以及開發相關抑制癌症藥物及治療乳癌的方式一直都是相當重要的課題之一。GCIP(Grap2 cyclin-D interacting protein)蛋白包含360 個氨基酸,其分子量約為42kDa。GCIP 含有五個區域,分別為:N 端區域、HLH 區域(helix-loop-helix
domain) 、acidic 區域(acidic domain)、leucine zipper 區域(leucine zipper domain)以及C 端區域。文獻指出GCIP 在許多高度分化的細胞均有大量表現,例如心臟、肌肉、周邊血液白血球以及腦部。而我們在先前的研究發現,GCIP 蛋白其表現量與乳癌細胞癌化程度呈現負相關,所以我們推測,GCIP 蛋白在細胞癌化的過
程當中為一重要調節因子。為了探討GCIP 在癌細胞中所扮演的角色,我們利用暫時性轉染(transient transfection)以及穩定表現細胞系統(stable clone)將GCIP 送入第三期乳癌細胞MDA-MB-231 中。我們藉由觀察細胞型態(morphology),生長(proliferation),細胞週期(cell cycle),移行(migration)以及侵入(invasion)的影響。利用免疫螢光染色,我們發現擁有GCIP 的細胞其細胞突處(lame-podia)以及肌動蛋白應力纖維(stress fiber)較少,代表細胞其較缺乏移動及生長能力。利用MTT方式我們也發現,擁有GCIP 的細胞其生長明顯比控制組細胞緩慢,且利用滴流細胞儀分析發現,擁有GCIP 的細胞其細胞週期大部分停留於G0/G1 時期。另外,我們利用boyden chamber 觀察細胞移行能力。實驗發現GCIP 的存在使得癌細胞移行能力有約60~75%的下降情形。除此之外,我們利用特製的invasion chamber探討癌細胞其侵入能力是否有何改變。實驗發現,擁有GCIP 的細胞其侵入能力有40~70%下降。我們更進一步探討GCIP 是否會調控癌化相關蛋白表現或訊號傳遞路徑。在癌細胞移轉的過程當中MMP(基質的金屬蛋白酵素)扮演重要的角色。所以我們利用zymography 分析癌細胞其MMP-2,-9 表現狀況。實驗結果發現,GCIP 的存在會抑制MMP-2 以及MMP-9 的表現,代表細胞其侵入能力有減弱的現象。文獻指出GCIP 存在的細胞中細胞週期調控蛋白cyclin D1 表現量也
會下降,綜合以上的實驗以及參考文獻,我們認為GCIP 的存在有可能會藉著調控細胞訊號傳遞,達到抑制蛋白表現的結果。我們首先利用西方墨點法分析MAPK(Mitogen-Activated Protein Kinase)路徑當中ERK1/2, p38 以及JNK 被活化程度。實驗結果發現,擁有GCIP 的細胞其ERK1/2, p38 以及JNK 之磷酸化程度
均被明顯的抑制,並且與GCIP 蛋白表現情形呈現負相關情況;我們認為GCIP擁有直接或間接調控細胞週期達到抑制細胞癌化之能力。
Breast cancer is the most common malignant disease in Western women. In these patients, it is not the primary tumor, but its metastasis at distant sites that are the main cause of death. Hence, it is important to discover new diagnoses approach and therapeutic target that against the malignancy of breast cancer cells. Grap2 cyclin-D
interacting protein (GCIP) is ubiquitously expressed in human tissues with a relatively
higher level in the heart, skeletal muscle, kidney, and peripheral blood leukocytes. The
full length of GCIP contains 360 amino acids with predicts molecular mass of 40 kDa.
Previous evidences show that GCIP is a negative regulator of transcription factors. In our previous study we found that the expression level was related to breast cancer cells’ malignancy. We suggest that GCIP was an important key regulator in cancer progression. GCIP was transient transfected and stable expressed in MDA-MB-231. Cell morphology, proliferation, cell cycle progression, migration and invasion were performed in observation. In fluorescent microscopic observation we found that GCIP transfected cells had less lame-podia and stress fibers. This data indicated that GCIP
expressed cells have lower migrating ability. In MTT assay, we demonstrated that GCIP stable clone had lower proliferating rate than control cells. Moreover, we found that GCIP also inhibit cell progression which is consistent to previous research. Furthermore, we also indicated that GCIP dramatically reduced breast cancer cell
migration and invasion ability. Evidenced showed that metalloprotease (MMPs) play important role in breast cancer cells migration and invasion, we performed zymography assay to investigate whether GCIP inhibits MMP secretion. Our results
indicated that GCIP down-regulate MMP-2 and MMP-9 expression in mRNA and protein level. The data indicated that GCIP reduced cell invasion ability. However,recent study claimed that GCIP inhibits cyclin D1 expression in tumor cells. Hence, we suggested that upstream MAPK pathway play major role in regulating MMP and
cyclin D1 expression. We found that the activation of ERK1/2, p38 and JNK were much lower in GCIP stable clone than in control cells. Here we proposed a novel regulatory mechanism of GCIP in breast cancer cells. In conclusion, we suggested that GCIP plays an important role in regulation of breast cancer metastasis furthermore GCIP will be a potential therapeutic target in discovering new anti-cancer
agents.
1. Grunwald, S., Ohlinger, R., Schwesinger, G. & Kohler, G. [Primary
intracystic squamous cell cancer of female breast]. Zentralbl Gynakol 126,
36-40 (2004).
2. Perks, C.M. et al. Prolactin acts as a potent survival factor for human
breast cancer cell lines. Br J Cancer 91, 305-11 (2004).
3. Zablotska, L.B., Chak, A., Das, A. & Neugut, A.I. Increased risk of squamous
cell esophageal cancer after adjuvant radiation therapy for primary breast
cancer. Am J Epidemiol 161, 330-7 (2005).
4. Somasundaram, K. Breast cancer gene 1 (BRCA1): role in cell cycle
regulation and DNA repair--perhaps through transcription. J Cell Biochem 88,
1084-91 (2003).
5. Gazdar, A.F. et al. Characterization of paired tumor and non-tumor cell
lines established from patients with breast cancer. Int J Cancer 78, 766-74
(1998).
6. Tomlinson, G.E. et al. Characterization of a breast cancer cell line derived
from a germ-line BRCA1 mutation carrier. Cancer Res 58, 3237-42 (1998).
7. Zwijsen, R.M. et al. Cyclin D1 triggers autonomous growth of breast cancer
cells by governing cell cycle exit. Mol Cell Biol 16, 2554-60 (1996).
8. Tilkin, A.F. et al. Primary proliferative T cell response to wild-type p53
protein in patients with breast cancer. Eur J Immunol 25, 1765-9 (1995).
9. Sirvent, J.J. et al. p53 in breast cancer. Its relation to histological
grade,lymph-node status, hormone receptors, cell-proliferation fraction (ki
67) and c-erbB-2. Immunohistochemical study of 153 cases. Histol
Histopathol 10,531-9 (1995).
10. Hlobilkova, A. et al. Tumour suppressor PTEN regulates cell cycle and
protein kinase B/Akt pathway in breast cancer cells. Anticancer Res 26,
1015-22 (2006).
11. Pukrop, T. et al. Wnt 5a signaling is critical for macrophage-induced
invasion of breast cancer cell lines. Proc Natl Acad Sci U S A 103, 5454-9
(2006).
12. Caldon, C.E., Daly, R.J., Sutherland, R.L. & Musgrove, E.A. Cell cycle
control in breast cancer cells. J Cell Biochem 97, 261-74 (2006).
13. Mohamood, A.S. et al. Estrogen receptor, growth factor receptor and
protooncogene protein activities and possible signal transduction
crosstalk in estrogen dependent and independent breast cancer cell lines.
J Submicrosc Cytol Pathol 29, 1-17 (1997).
14. Megha, T. et al. p53 mutation in breast cancer. Correlation with cell
kinetics and cell of origin. J Clin Pathol 55, 461-6 (2002).
15. Seitz, S. et al. Identification of microsatellite instability and mismatch
repair gene mutations in breast cancer cell lines. Genes Chromosomes
Cancer 37,29-35 (2003).
16. Engebraaten, O. & Fodstad, O. Site-specific experimental metastasis
patterns of two human breast cancer cell lines in nude rats. Int J Cancer
82, 219-25(1999).
17. Verbeek, B.S., Adriaansen-Slot, S.S., Vroom, T.M., Beckers, T. & Rijksen,
G.Overexpression of EGFR and c-erbB2 causes enhanced cell migration in
human breast cancer cells and NIH3T3 fibroblasts. FEBS Lett 425, 145-50
(1998).
18. Fong, S. et al. Id-1 as a molecular target in therapy for breast cancer
cell invasion and metastasis. Proc Natl Acad Sci U S A 100, 13543-8 (2003).
19. Caldani, C., Far, D.F., Birtwisle-Peyrottes, I., Ettore, F. & Rostagno, P.
Cell cycle expression of p53 protein, c-Myc gene product and
tyrosine-phosphorylation level determined by image analysis in human breast
cancer cells. Anal Quant Cytol Histol 18, 233-40 (1996).
20. Milde-Langosch, K., Bamberger, A.M., Methner, C., Rieck, G. & Loning, T.
Expression of cell cycle-regulatory proteins rb, p16/MTS1, p27/KIP1,
p21/WAF1, cyclin D1 and cyclin E in breast cancer: correlations with
expression of activating protein-1 family members. Int J Cancer 87, 468-72
(2000).
21. Liu, X. et al. Difference of cell cycle arrests induced by lidamycin in
human breast cancer cells. Anticancer Drugs 17, 173-9 (2006).
22. Moll, U.M., Ostermeyer, A.G., Ahomadegbe, J.C., Mathieu, M.C. & Riou, G.
p53 mediated tumor cell response to chemotherapeutic DNA damage: a
preliminary study in matched pairs of breast cancer biopsies. Hum Pathol
26,1293-301 (1995).
23. Landberg, G. & Roos, G. The cell cycle in breast cancer. Apmis 105, 575-89
(1997).
24. Leone, F. et al. Detection of breast cancer cell contamination in
leukapheresis product by real-time quantitative polymerase chain reaction.
Bone Marrow Transplant 27, 517-23 (2001).
25. Simone, G. et al. nm23 expression in human breast cancer: correlation with
cell proliferation (S-phase) as observed with a double-labeling
immunocytochemical-autoradiographic technique. Int J Oncol 12, 1055-9
(1998).
26. Zhong, Q., Chen, C.F., Chen, Y., Chen, P.L. & Lee, W.H. Identification of
cellular TSG101 protein in multiple human breast cancer cell lines. Cancer
Res 57, 4225-8 (1997).
27. Geffroy, N., Guedin, A., Dacquet, C. & Lefebvre, P. Cell cycle regulation
of breast cancer cells through estrogen-induced activities of ERK and Akt
protein kinases. Mol Cell Endocrinol 237, 11-23 (2005).
28. Zafonte, B.T. et al. Cell-cycle dysregulation in breast cancer: breast
cancer therapies targeting the cell cycle. Front Biosci 5, D938-61 (2000).
29. Xia, C. et al. GCIP, a novel human grap2 and cyclin D interacting protein,
regulates E2F-mediated transcriptional activity. J Biol Chem 275, 20942-8
(2000).
30. Chang, M.S., Chang, C.L., Huang, C.J. & Yang, Y.C. p29, a novel
GCIP-interacting protein, localizes in the nucleus. Biochem Biophys Res
Commun 279, 732-7 (2000).
31. Li, N., Sokal, I., Bronson, J.D., Palczewski, K. & Baehr, W.Identification
of functional regions of guanylate cyclase-activating protein 1 (GCAP1)
using GCAP1/GCIP chimeras. Biol Chem 382, 1179-88 (2001).
32. Lai, C.F. et al. An Osteopontin-NADPH Oxidase Signaling Cascade Promotes
Pro-Matrix Metalloproteinase 9 Activation in Aortic Mesenchymal Cells. Circ
Res (2006).
33. Itoh, Y. & Seiki, M. MT1-MMP: a potent modifier of pericellular
microenvironment. J Cell Physiol 206, 1-8 (2006).
34. Nielsen, B.S. et al. Expression of matrix metalloprotease-9 in vascular
pericytes in human breast cancer. Lab Invest 77, 345-55 (1997).
35. Huber, R.M. & Stratakis, D.F. Molecular oncology--perspectives in lung
cancer. Lung Cancer 45 Suppl 2, S209-13 (2004).
36. Holzmann, J. et al. Assorted effects of TGFbeta and chondroitinsulfate on
p38 and ERK1/2 activation levels in human articular chondrocytes
stimulated with LPS. Osteoarthritis Cartilage (2006).
37. Dias, S. et al. Autocrine stimulation of VEGFR-2 activates human leukemic
cell growth and migration. J Clin Invest 106, 511-21 (2000).
38. Zeigler, M.E., Chi, Y., Schmidt, T. & Varani, J. Role of ERK and JNK
pathways in regulating cell motility and matrix metalloproteinase 9
production in growth factor-stimulated human epidermal keratinocytes. J
Cell Physiol 180,271-84 (1999).
39. Zhong, J. et al. ERK1/2 and p38 MAP kinase control MMP-2, MT1-MMP, and
TIMP action and affect cell migration: a comparison between mesothelioma
and mesothelial cells. J Cell Physiol 207, 540-52 (2006).
40. Yao, J.S. et al. Minocycline exerts multiple inhibitory effects on vascular
endothelial growth factor-induced smooth muscle cell migration: the role of
ERK1/2, PI3K, and matrix metalloproteinases. Circ Res 95, 364-71 (2004).
41. Dufourny, B. et al. Mitogenic signaling of insulin-like growth factor I in
MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and
is independent of mitogen-activated protein kinase. J Biol Chem 272, 31163
71 (1997).