| 研究生: |
蕭涵 Hsiao, Han |
|---|---|
| 論文名稱: |
利用誘導細胞核表現重組轉錄似活化因子蛋白核酸酶(TALEN)以促進菸草葉綠體基因轉殖效率之研究 The study of enhancing chloroplast transformation efficiency by inducibly expressed the recombinant TALEN proteins in tobacco |
| 指導教授: |
張清俊
Chang, Ching-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 葉綠體基因轉殖 、TALEN 、rpoB gene |
| 外文關鍵詞: | Chloroplasts transformation, TALEN, rpoB gene |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
葉綠體基因轉殖大多是利用基因槍轟擊(Bombardment)的方式將外源基因導入植物的葉綠體中,接著由同源重組的方式準確地將外源基因插入植物綠體 DNA 中。但是要獲得葉綠體基因轉殖植株需要花費較多的時間來進行篩選及再生,且葉綠體基因轉殖的成功率並不高。近年來,基因編輯技術-轉錄似活化因子蛋白核酸酶(TALEN)已被廣泛應用於植物細胞核的編輯上。在本實驗室先前的研究中,已構築分別由 rbcS 啟動子和 β-estradiol 誘導的 TALEN 細胞核表現載體,並利用農桿菌感染的方式將該載體送入菸草的細胞核中,來對葉綠體 rpoB 基因和 rbcL-accD 之間進行編輯。而由於 TALEN 的作用,會對葉綠體的 DNA 造成雙股斷裂(Double strand break),進而增進葉綠體 DNA 的同源重組機制。因此,為了提高葉綠體基因轉殖效率,在本研究中,我們分別使用 rbcS 啟動子和 β-estradiol 誘導的 TALEN 細胞核表現轉殖植株作為宿主,其產生的重組 TALEN 蛋白可進入菸草葉綠體 DNA進行作用,同時利用基因槍轟擊的方式分別將pRpoB 或 pCpNluc06 葉綠體表現載體導入葉片中,期望能提升葉綠體基因轉殖之效率。將轟擊後的組織,使用抗生素進行篩選及再生後,已經獲得5個可能帶有外源基因的轉殖植株,目前正在進行分析。
Chloroplast transformation via biolistic bombardment is the most commonly used method to deliver expression vectors into plastid, and subsequently the transgene could integrate into plastid genome by homologous recombination. Under time-consuming process of selection and regeneration, then transplastomic plants could be generated. However, the efficiency of plastid transformation is very low. Recently, the transcription activator like effector nuclease (TALENs) technology has been widely applied to edit nuclear genome of plants for various biotechnological applications. In the previous study of this Lab., both leaf-specific and β-estradiol-inducible nuclear TALEN expression vectors have been constructed and transformed into the nuclear genomes of tobacco to edit the rpoB gene in chloroplasts. Transgenic plants conferred various degrees of phenotypic effects; because of the integrity of chloroplast DNA might be damaged. To improve the chloroplast transformation efficiency by taking advantage of recombinant TALEN protein which can cause the double strand break (DSB) of tobacco chloroplast DNA, in the present study, we used the transgenic tobacco plants which the nuclear TALEN gene expression is leaf-specific or β-estradiol-inducible as hosts, and then deliver the pRpoB or pCpNluc06 chloroplast expression vectors as donor DNA into leaf tissues via biolistic bombardment, respectively, to facilitate homologous recombination. Subsequently, under the process of antibiotic selection and regeneration, five putative transplastomic plants were generated. Molecular analysis of putative transplastomic plants is currently on-going.
吳佩諭,利用似轉錄激活因子蛋白核酸酶(TALEN)技術對植物粒線體 nad1 基因進行編輯,國立成功大學生物科技研究所碩士論文,2017。
沈家儀,應用 TALEN 技術引發阿拉伯芥葉綠體 rpoB 基因之突變,國立成功大學生物科技研究所碩士論文,2017。
陳詩璇,利用誘導表現轉錄似活化因子蛋白核酸酶(TALEN)來改變菸草葉綠體 DNA,國立成功大學生物科技研究所碩士論文,2018。
葉錫東、陳良築、楊長賢、曾志正、詹富智,基因槍轉殖技術,植物基因轉殖之原理與應用,教育部顧問室植物生物技術教學資源中心出版,台中,25-28、2004。
蘇源霖,轉殖似轉錄激活因子蛋白核酸酶(TALEN)來改變菸草葉綠體 DNA 序列之研究,國立成功大學生物科技研究所碩士論文,2016。
Adem, M., Beyene, D. and Feyissa, T. Recent achievements obtained by chloroplast transformation. Plant Methods 13, 30, 2017.
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. The Transport of Proteins into Mitochondria and Chloroplasts. Garland Science: New York. Molecular Biology of the Cell, 91-102, 2002.
Allen, G. C., Flores-Vergara, M. A., Krasnyanski, S., Kumar, S. and Thompson, W. F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols 1, 2320-2325, 2006.
Allison, L.A., Simon, L.D. and Maliga, P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. The European Molecular Biology Organization Journal 15, 2802-2809, 1996.
Aoyama, T. and Chua, N.H. A glucocorticoid‐mediated transcriptional induction system in transgenic plants. The Plant Journal 11, 605-612, 1997.
Asada, K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology 141, 391-396, 2006.
Baharoglu, Z., Bradley, A.S., Le Masson, M., Tsaneva, I. and Michel, B. ruvA Mutants that resolve Holliday junctions but do not reverse replication forks. Public Library of Science Genetics 4, e1000012, 2008.
Beeramganti, N., Beeramganti, H., Subramanyam, K. and Rajasekhar, P. Chloroplast expression vector system & its transformation. International Journal of Science and Technology 2, 4, 2012.
Bock, R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annual Review of Plant Biology 66, 211-241, 2015.
Bogorad, L. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends in Biotechnology 18, 257-263, 2000.
Caffarri, S., Tibiletti, T., C Jennings, R. and Santabarbara, S. A comparison between plant photosystem I and photosystem II architecture and functioning. Current Protein and Peptide Science 15, 296-331, 2014.
Cavalier-Smith, T. Chloroplast evolution: secondary symbiogenesis and multiple losses. Current Biology 12, 62-64, 2002.
Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J. A., Somia, N. V., Bogdanove, A. J. and Voytas, D. F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Rresearch 39, e82, 2011.
Chen, Z., Cheng, Q., Hu, C., Guo, X., Chen, Z., Lin, Y., Hu, T., Bellizzi, M., Lu, G., Wang, G.L. and Wang, Z. A Chemical-Induced, Seed-Soaking Activation Procedure for Regulated Gene Expression in Rice. Frontiers in Plant Science 8, 1447, 2017.
Daniell, H. Transformation and foreign gene expression in plants by microprojectile bombardment. Methods in Molecular Biology 62, 463-489, 1997.
Daniell, H., Datta, R., Varma, S., Gray, S. and Lee, S.B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nature Biotechnology 16, 345, 1998.
Daniell, H., Khan, M.S. and Allison, L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends in Plant Science 7, 84-91, 2002.
Daniell, H., Kumar, S. and Dufourmantel, N. Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends in Biotechnology 23, 238-245, 2005.
de León, V.P., Mérillat, A.M., Tesson, L., Anegón, I. and Hummler, E. Generation of TALEN-mediated GRdim knock-in rats by homologous recombination. Public Library of Science One 9, e88146, 2014.
Deroles, S. C. and Gardner, R. C. Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Molecular Biology 11, 365-377, 1988.
Drescher, A., Ruf, S., Calsa Jr, T., Carrer, H. and Bock, R. The two largest chloroplast genome‐encoded open reading frames of higher plants are essential genes. The Plant Journal 22, 97-104, 2000.
Elghabi, Z., Ruf, S. and Bock, R. Biolistic co‐transformation of the nuclear and plastid genomes. The Plant Journal 67, 941-948, 2011.
Fathi Roudsari, M., Salmanian, A. H., Mousavi, A., Hashemi Sohi, H. and Jafari, M. Regeneration of glyphosate-tolerant Nicotiana tabacum after plastid transformation with a mutated variant of bacterial aroA gene. Iranian Journal of Biotechnology 7, 247-253, 2009.
Gaj, T., Gersbach, C. A. and Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31, 397-405, 2013.
Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I. and Laloi, C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28, 1091-1101, 2006.
Hegde, S.P., Qin, M.H., Li, X.H., Atkinson, M.A., Clark, A.J., Rajagopalan, M. and Madiraju, M.V. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proceedings of the National Academy of Sciences of the United States of America 93, 14468-14473, 1996.
Huang, F.C., Klaus, S., Herz, S., Zou, Z., Koop, H.U. and Golds, T. Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Molecular Genetics and Genomics 268, 19-27, 2002.
Ismagul, A., Yang, N., Maltseva, E., Iskakova, G., Mazonka, I., Skiba, Y., Bi, H., Eliby, S., Jatayev, S., Shavrukov, Y. and Borisjuk, N. A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. Biomed Central Genomics Plant Biology 18, 135, 2018.
Iwasaki, H., Takahagi, M., Shiba, T., Nakata, A. and Shinagawa, H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. The European Molecular Biology Organization Journal 10, 4381-4389, 1991.
Iwasaki, H., Takahagi, M., Nakata, A. and Shinagawa, H. Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes and Development 6, 2214-2220, 1992.
Kang, H. G., Fang, Y. and Singh, K. B. A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. The Plant Journal 20, 127-133, 1999.
Koop, H.U., Steinmüller, K., Wagner, H., Rößler, C., Eibl, C. and Sacher, L. Integration of foreign sequences into the tobacco plastome via polyethylene
glycol-mediated protoplast transformation. Planta 199, 193-201, 1996.
Krichevsky, A., Meyers, B., Vainstein, A., Maliga, P. and Citovsky, V. Autoluminescent plants. Public Library of Science One 5, e15461, 2010.
Kubo, M., Imai, A., Nishiyama, T., Ishikawa, M., Sato, Y., Kurata, T., Hiwatashi, Y., Reski, R. and Hasebe, M. System for stable β-estradiol-inducible gene expression in the moss Physcomitrella patens. Public Library of Science One 8, e77356, 2013.
Lee, M. S., Mullen, R. T. and Trelease, R. N. Chloroplasts and Other Plastids. Handbook of Plant Science 1, 249, 2007.
Lee, S. B., Kwon, H. B., Kwon, S. J., Park, S. C., Jeong, M. J., Han, S. E., Byun, M. O. and Danisll, H. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Molecular Breeding 11, 1-13, 2003.
Li, B. and Zheng, Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Scientific Reports 8, 9285, 2018.
Li, D., Tang, N., Fang, Z., Xia, Y. and Cao, M. Co-transfer of TALENs construct targeted for chloroplast genome and chloroplast transformation vector into rice using particle bombardment. Journal of Nanoscience and Nanotechnology 16, 12194-12201, 2016.
Li, T., Huang, S., Jiang, W.Z., Wright, D., Spalding, M.H., Weeks, D.P. and Yang, B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research 39, 359-372, 2011.
Li, T., Liu, B., Spalding, M. H., Weeks, D. P. and Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30, 390-392, 2012.
Liu, C. W., Lin, C. C., Yiu, J. C., Chen, J. J. and Tseng, M. J. Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var.capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theoretical and Applied Genetics 117, 75-88, 2008.
Manova, V. and Gruszka, D. DNA damage and repair in plants-from models to crops. Frontiers in Plant Science 6, 885, 2015.
Maureen, R. H., Benjamin, N. G. and Beth, A. A. Chloroplast transformation for engineering of photosynthesis. Journal of Experimental Botany 64, 731-742, 2013.
Odahara, M., Inouye, T., Fujita, T., Hasebe, M. and Sekine, Y. Involvement of mitochondrial-targeted RecA in the repair of mitochondrial DNA in the moss, Physcomitrella patens. Genes and Genetic Systems 82, 43-51, 2007.
Odahara, M., Inouye, T., Nishimura, Y. and Sekine, Y. RECA plays a dual role in the maintenance of chloroplast genome stability in Physcomitrella patens. The Plant Journal 84, 516-526, 2015a.
Odahara, M., Masuda, Y., Sato, M., Wakazaki, M., Harada, C., Toyooka, K. and Sekine, Y. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats. Public Library of Science Genetics 11, e1005080, 2015b.
Okuzaki, A., Konagaya, K. I., Nanasato, Y., Tsuda, M. and Tabei, Y. Estrogen-inducible GFP expression patterns in rice (Oryza sativa L.). Plant Cell Reports 30, 529-538, 2011.
Ouwerkerk, P. B., de Kam, R. J., Hoge, H. J. and Meijer, A. H. Glucocorticoid-inducible gene expression in rice. Planta 213, 370-378, 2001.
Padidam, M. Chemically regulated gene expression in plants. Current Opinion in Plant Biology 6, 169-177, 2003.
Pang, Q., Hays, J.B. and Rajagopal, I. A plant cDNA that partially complements Escherichia coli recA mutations predicts a polypeptide not strongly homologous to RecA proteins. Proceedings of the National Academy of Sciences of the United States of America 89, 8073-8077, 1992.
Peeters, N. and Small, I. Dual targeting to mitochondria and chloroplasts. Biochimica et Biophysica Acta-Molecular Cell Research 1541, 54-63, 2001.
Pospíšil, P. Production of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta-Bioenergetics 1787, 1151-1160, 2009.
Ravi, V., Khurana, J.P., Tyagi, A.K. and Khurana, P. An update on chloroplast genomes. Plant Systematics and Evolution 271, 101-122, 2008.
Reiss, B. Homologous recombination and gene targeting in plant cells. International Review of Cytology 228, 85-139, 2003.
Rocha, E. P., Cornet, E. and Michel, B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. Public Library of Science Genetics 1, e15, 2005.
Ruf, S., Hermann, M., Berger, I. J., Carrer, H. and Bock, R. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology 19, 870-875, 2001.
Shan, Q., Zhang, Y., Chen, K., Zhang, K. and Gao, C. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnology Journal 13, 791-800, 2015.
Sharples, G. J., Ingleston, S. M. and Lloyd, R. G. Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. Journal of Bacteriology 181, 5543-5550, 1999.
Siligato, R., Wang, X., Yadav, S.R., Lehesranta, S., Ma, G., Ursache, R., Sevilem, I., Zhang, J., Gorte, M., Prasad, K. and Wrzaczek, M. MultiSite gateway-compatible cell type-specific gene-inducible system for plants. Plant Physiology 2, 170, 627-641, 2016.
Sivamani, E., DeLong, R.K. and Qu, R. Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Reports 28, 213-221, 2009.
Tizaoui, K. and Kchouk, M. E. Genetic approaches for studying transgene inheritance and genetic recombination in three successive generations of transformed tobacco. Genetics and Molecular Biology 35, 640-649, 2012.
Valkov, V. T., Gargano, D., Manna, C., Formisano, G., Dix, P. J., Gray, J. C., Scotti, N. and Cardi, T. High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5' and 3' regulatory sequences. Transgenic Research 20, 137-151, 2011.
Van Breusegem, F. and Dat, J. F. Reactive oxygen species in plant cell death. Plant Physiology 141, 384-390, 2006.
Xu, M. and Dong, J. Enhancing terpenoid indole alkaloid production by inducible expression of mammalian Bax in Catharanthus roseus cells. Science in China Series C: Life Sciences 50, 234-241, 2007.
Yin, Z., Plader, W. and Malepszy, S. Transgene inheritance in plants. Journal of Applied Genetics 45, 127-144, 2004.
Zhang, Y., Li, H., Ouyang, B., Lu, Y. and Ye, Z. Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnology Letters 28, 1247-1253, 2006.
Zuo, J., Niu, Q. W. and Chua, N. H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal 24, 265-273, 2000.
Zuo, J. and Chua, N.H. Chemical-inducible systems for regulated expression of plant genes. Current Opinion in Biotechnology 11, 146-151, 2000.
校內:2024-08-27公開