簡易檢索 / 詳目顯示

研究生: 張明華
Chang, Ming-Hua
論文名稱: 奈米結構的設計於有機場效電晶體之應用
Application and design of nanostructure for organic field-effect transistor
指導教授: 周維揚
Chou, Wei-Yang
鄭弘隆
Cheng, Horng-Long
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 91
中文關鍵詞: 五環素聚亞醯胺奈米壓印奈米結構晶相起始電壓
外文關鍵詞: pentacene, polyimide, nanoimprinting, nanostructure, polymorphism, threshold voltage shift
相關次數: 點閱:97下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機半導體材料為近十年來備受研究與注意的新興材料,概因其製程設備便宜、低製程溫度、以及可撓曲等特性。有機元件中,更多的研究專注於提升有機場效電晶體的載子移動率與探討載子傳輸的機制。隨著電晶體微小化的趨勢,元件之間的串音(cross-talk)導致的漏電流日益嚴重,若能使電晶體元件具載子移動率異相性,將可解決此問題,有助於製作更微小的電子元件。起始電壓(threshold voltage, Vt)為電晶體中重要的參數之一,精確的控制電晶體之起始界壓對可靠的電路操作而言是不可或缺的。論文中利用有機半導體材料中常被研究與使用的小分子材料-五環素(pentacene)與高分子材料-聚(3-己烷基噻吩)(P3HT)做為有機半導體層。
    利用具感光特性的聚亞醯胺(photosensitive polyimide, PSPI)來改善與修飾五環素與二氧化矽之間(有機-無機)的介面。聚亞醯胺層有效改善並提升有機場效電晶體元件的電特性。聚亞醯胺經極化紫外光照射,其表面分子因對紫外光吸收能力不同將使分子鏈產生不同的斷鍵情形。五環素成長在經極化紫外光曝照的聚亞醯胺表面,因聚亞醯胺薄膜表面異相性使五環素薄膜產生配向效果。電晶體元件載子移動率產生異相性。不同紫外光能量對於聚亞醯胺產生之斷鍵數量不同,影響聚亞醯胺表面所殘留之電子電荷數量,使電晶體元件之載子移動率產生不同影響。本論文所使用之感光性聚亞醯胺在曝照能量為20焦耳時將產生最大載子移動率與異相性比。
    感光式配向所產生電特性的異相性有限,本論文中引入接觸轉印與遮罩植入式顯影(contact-transferrd and mask-embedded lithography, CMEL)製作出深80 nm、寬400、600、800和1200 nm的聚亞醯胺奈米溝槽來配向五環素半導體層。此方法不僅同樣具有改善五環素與二氧化矽間介面的功能,更可提高電晶體元件載子遷移率的異相性(比值高達220)。概因奈米溝槽提供載子在兩方向上有不同的行進方式。載子在電晶體源極與汲極間傳遞時,若奈米結構的走向垂直於源極與汲極間的電場,則載子需跨越奈米溝槽結構。當載子在奈米結構的邊緣傳遞(由槽底往上移動)時,由於傳遞方向垂直電場,不利於載子的運動。若奈米結構平行電場方向,則載子的運動不受結構的影響。載子遷移率的高異相性比可以應用在積體電路上,用來阻絕相鄰元件間的漏電流,而不需要在相鄰元件間額外製作阻擋層來阻止漏電流的傳遞。
    聚亞醯胺奈米溝槽不僅具提高載子移動率異相性的能力,更可應用於控制五環素晶相的轉變。五環素成長於二氧化矽基板或是聚亞醯胺薄膜上,其主要晶相為薄膜相(thin-film phase)。利用不同線寬的奈米溝槽可使五環素晶相產生變化。五環素磊晶於線寬越窄的溝槽結構,主要晶相將轉變成塊材相(bulk phase)。隨著溝槽線寬變寬,薄膜相對塊材相的X-ray繞射訊號強度比值將隨之變大。在溝槽線寬為400 nm的結構上磊晶的五環素薄膜,更發現了一個新的五環素晶相,其c軸晶格距離為1.35 nm。借由化學量子模擬計算,發現此新晶相較目前已知最穩定的五環素晶相(c軸晶格距離為1.41 nm)更穩定。五環素晶相轉變主因乃溝槽結構提供一外在擾動,如同在成長五環素薄膜時,成長於高溫基板或以溶劑處理五環素薄膜表面,使五環素分子磊晶時將往更穩定的晶相結構(塊材相)轉變。
    論文最後利用氧電漿處理控制聚(3-己烷基噻吩)場效電晶體之起始電壓。利用水溶性聚胺酯 (polyurethane, PU),以旋轉塗佈法當作介電層並利用氧電漿做表面處理,量測在不同氧電漿能量轟擊下表面能之變化。介電層表面能與元件起始電壓具有特定之關係,隨著表面能增大,起始電壓往0 V偏移。聚胺酯表面經氧電漿轟擊後,表面所帶有之電子數量將減少,而降低累積通道產生所需的電壓值而達到控制起始電壓的目的。

    Organic field-effect transistors (OFETs) have attracted a lot of interest for practical applications such as flexible flat-panel displays, logic devices, and radio frequency identification tags. The interface between organic semiconductors and the insulator greatly influences the performance of organic devices. Reducing the processes and improving the interface are thus desirable goals.
    The work presented in this dissertation is divided into two parts according to the type of organic material. Part one deals with a small-molecule material, pentacene, and part two deals with conjugated organic polymers, poly(3-hexythiophene). In part one, we used photosensitive polyimide (PI) to improve the interface between pentacene film and SiO2. PI efficiently improves the performance of OFETs; however, exposure to polarized UV light does not provide a high anisotropic ratio of electrical mobility. Furthermore, we used a PI nanostructure to replace the flat PI layer. A built-in autopattern organic semiconductor function on a nanoscale resolution is used because it yields a high anisotropic ratio of mobility (above 220). The nanostructure also affects the polymorphism in pentacene film. The polymorph of pentacene film changed gradually from the thin-film phase to the bulk phase with decreasing width of the nanogratings; the bulk phase and the thin-film phase were both observed in the early stage of growth, which differs from previous studies. Additionally, a new polymorph, whose d-spacing is 1.35 nm, was observed in pentacene thin films deposited on the PI nanostructure.
    In part two, we used a polymer material as the semiconductor and water-based polyurethane as the dielectric layer. We exposed polyurethane to various O2 plasma flow energy levels. This method can be used to control the threshold voltage of OFETs in the range of -20 to 0 V.

    Table of Contents 摘要………. i Abstract….. iv 致謝………. vi Table of Contents viii List of Tables xi List of Figures xii Chapter 1 Introduction 1 1.1 BACKGROUND 1 1.2 ORGANIC MATERIALS 2 SMALL MOLECULES 2 CONJUGATED POLYMER 5 1.3 CHARGE TRANSPORT IN ORGANIC MATERIALS 6 SMALL-POLARON HOPPING MODEL 6 VARIABLE-RANGE HOPPING (VRH) MODEL39 7 CONJUGATE Π-ELECTRONIC ORBITAL 8 1.4 ORGANIC FIELD-EFFECT TRANSISTORS 9 1.4.1. ACCUMULATION CHANNEL 12 1.5 DISSERTATION OBJECTIVES AND ORGANIZATION 14 Chapter 2 Photosensitive Polyimide for Pentacene-Based Field-effect transistor Applications 15 2.1 INTRODUCTION 15 2.2 PHOTOALIGNMENT MECHANISM 16 PHOTOISOMERIZATION 16 PHOTODIMERIZATION 17 PHOTODEGRADATION 17 2.3 EXPERIMENT 19 2.4 RESULTS 21 Chapter 3 Electrical Characteristics of Organic Field-effect transistors with a Nanostructure 28 3.1 INTRODUCTION 28 3.2 NANO-IMPRINTING LITHOGRAPHY 29 3.3 CONTACT-TRANSFER AND MASK-EMBEDDED LITHOGRAPHY 30 3.4 EXPERIMENT 32 3.5 RESULTS 34 3.6 CONCLUSIONS 38 3.7 POST SCRIPTUM 38 Chapter 4 Polymorphs of Pentacene Films Grown On Nanostructures 40 4.1 INTRODUCTION 40 4.2 POLYMORPHISMS OF PENTACENE FILMS 41 4.3 EXPERIMENT AND DISCUSSION 44 4.3.1 POLYMORPHIC TRANSFORMATION OF PENTACENE FILMS INDUCED BY NANOIMPRINTING 44 4.3.2 POLYMORPHIC TRANSFORMATION OF PENTACENE FILMS INDUCED BY NANOIMPRINTING IN PENTACENE-FILM EARLY-STAGE GROWTH 57 4.4 CONCLUSIONS 64 Chapter 5 Controllable Threshold-Voltage by O2 Plasma Treatment on Polyurethane-Modified Dielectrics 66 5.1. INTRODUCTION 66 5.2. EXPERIMENT 67 5.3. RESULTS AND DISCUSSIONS 70 5.4. CONCLUSIONS 73 Chapter 6 Conclusion and Future Works 74 References.. 76 Vita……….. 89 Journal Articles 90

    References
    1. M. Pope; C. E. Swenberg, "Electronic Processes in Organic Crystals and Polymers." 2nd ed. ed.; Oxford University Press: New York, 1999.
    2. Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Chen, Y. R.; Yang, F. Y.; Shu, D. Y.; Liao, C. C.; Tang, F. C., "High mobility pentacene thin-film transistors on photopolymer modified dielectrics." Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2006, 45 (10A), 7922-7924.
    3. Tan, H. S.; Mathews, N.; Cahyadi, T.; Zhu, F. R.; Mhaisalkar, S. G., "The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors." Applied Physics Letters 2009, 94 (26), 263303-1-263303-3.
    4. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., "Light-Emitting-Diodes Based on Conjugated Polymers." Nature 1990, 347 (6293), 539-541.
    5. Park, K. H.; Dhayal, M., "High efficiency solar cell based on dye sensitized plasma treated nano-structured TiO2 films." Electrochemistry Communications 2009, 11 (1), 75-79.
    6. Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W., "Large-scale complementary integrated circuits based on organic transistors." Nature 2000, 403 (6769), 521-523.
    7. Barbe, D. F.; Westgate, C. R., "Surface state parameters of metal-free phthalocyanine single crystals." Journal of Physics and Chemistry of Solids 1970, 31 (12), 2679-2687.
    8. Ebisawa, F.; Kurokawa, T.; Nara, S., "Electrical-Properties of Polyacetylene Polysiloxane Interface." Journal of Applied Physics 1983, 54 (6), 3255-3259.
    9. Koezuka, H.; Tsumura, A.; Ando, T., "Field-Effect Transistor with Polythiophene Thin-Film." Synthetic Metals 1987, 18 (1-3), 699-704.
    10. Tsumura, A.; Koezuka, H.; Ando, T., "Macromolecular Electronic Device - Field-Effect Transistor with a Polythiophene Thin-Film." Applied Physics Letters 1986, 49 (18), 1210-1212.
    11. Tsumura, A.; Koezuka, H.; Ando, T., "Polythiophene Field-Effect Transistor - Its Characteristics and Operation Mechanism." Synthetic Metals 1988, 25 (1), 11-23.
    12. Peng, X. Z.; Horowitz, G.; Fichou, D.; Garnier, F., "All-Organic Thin-Film Transistors Made of Alpha-Sexithienyl Semiconducting and Various Polymeric Insulating Layers." Applied Physics Letters 1990, 57 (19), 2013-2015.
    13. Horowitz, G.; Peng, X. Z.; Fichou, D.; Garnier, F., "The Oligothiophene-Based Field-Effect Transistor - How It Works and How to Improve It." Journal of Applied Physics 1990, 67 (1), 528-532.
    14. Lin, Y. Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N., "Stacked pentacene layer organic thin-film transistors with improved characteristics." IEEE Electron Device Letters 1997, 18 (12), 606-608.
    15. Jarrett, C. P.; Brown, A. R.; Friend, R. H.; Harrison, M. G.; deLeeuw, D. M.; Herwig, P.; Mullen, K., "Field-effect transistor studies of precursor-pentacene thin films." Synthetic Metals 1997, 85 (1-3), 1403-1404.
    16. Brown, A. R.; Jarrett, C. P.; deLeeuw, D. M.; Matters, M., "Field-effect transistors made from solution-processed organic semiconductors." Synthetic Metals 1997, 88 (1), 37-55.
    17. Dimitrakopoulos, C. D.; Malenfant, P. R. L., "Organic thin film transistors for large area electronics." Advanced Materials 2002, 14 (2), 99-117.
    18. Horowitz, G., "Organic field-effect transistors." Advanced Materials 1998, 10 (5), 365-377.
    19. Chou, W. Y.; Chang, M. H.; Cheng, H. L.; Yu, S. P.; Lee, Y. C.; Chiu, C. Y.; Lee, C. Y.; Shu, D. Y., "Application of nanoimprinting technology to organic field-effect transistors." Applied Physics Letters 2010, 96 (08), 083305-1-083305-3.
    20. Sirringhaus, H., "Reliability of Organic Field-Effect Transistors." Advanced Materials 2009, 21 (38-39), 3859-3873.
    21. Mattheus, C. C.; de Wijs, G. A.; de Groot, R. A.; Palstra, T. T. M., "Modeling the polymorphism of pentacene." Journal of the American Chemical Society 2003, 125 (20), 6323-6330.
    22. Mayer, A. C.; Ruiz, R.; Headrick, R. L.; Kazimirov, A.; Malliaras, G. G., "Early stages of pentacene film growth on silicon oxide." Organic Electronics 2004, 5 (5), 257-263.
    23. Cheng, H. L.; Mai, Y. S.; Chou, W. Y.; Chang, L. R.; Liang, X. W., "Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films." Advanced Functional Materials 2007, 17 (17), 3639-3649.
    24. Chang, P. C.; Lee, J.; Huang, D.; Subramanian, V.; Murphy, A. R.; Frechet, J. M. J., "Film morphology and thin film transistor performance of solution-processed oligothiophenes." Chemistry of Materials 2004, 16 (23), 4783-4789.
    25. Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.; Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D., "Fast Photoconduction in the Highly Ordered Columnar Phase of a Discotic Liquid-Crystal." Nature 1994, 371 (6493), 141-143.
    26. Park, S. H.; Jeong, J. G.; Kim, H. J.; Park, S. H.; Cho, M. H.; Cho, S. W.; Yi, Y.; Heo, M. Y.; Sohn, H., "The electronic structure of C60/ZnPc interface for organic photovoltaic device with blended layer architecture." Applied Physics Letters 2010, 96 (1), 013302-1-013302-3.
    27. Puigdollers, J.; Della Pirriera, M.; Marsal, A.; Orpella, A.; Cheylan, S.; Voz, C.; Alcubilla, R., "N-type PTCDI-C13H27 thin-film transistors deposited at different substrate temperature." Thin Solid Films 2009, 517 (23), 6271-6274.
    28. Cheng, H. L.; Lin, J. W.; Jang, M. F.; Wu, F. C.; Chou, W. Y.; Chang, M. H.; Chao, C. H., "Long-Term Operations of Polymeric Thin-Film Transistors: Electric-Field-Induced Intrachain Order and Charge Transport Enhancements of Conjugated Poly(3-hexylthiophene)." Macromolecules 2009, 42 (21), 8251-8259.
    29. Aryal, M.; Trivedi, K.; Hu, W. C., "Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography." Acs Nano 2009, 3 (10), 3085-3090.
    30. Leclerc, M., "Polyfluorenes: Twenty years of progress." Journal of Polymer Science Part a-Polymer Chemistry 2001, 39 (17), 2867-2873.
    31. Dulieu, B.; Wery, J.; Lefrant, S.; Bullot, J., "Intrinsic and extrinsic photocarriers in polyparaphenylenevinylene." Physical Review B 1998, 57 (15), 9118-9127.
    32. Marletta, A.; Silva, R. A.; Ribeiro, P. A.; Raposo, M.; Goncalves, D., "Controlling the absorption and emission properties of polyparaphenylenevinylene films." Journal of Non-Crystalline Solids 2008, 354 (42-44), 4856-4859.
    33. Glaeser, R. M.; Berry, R. S., "Mobilities of Electrons and Holes in Organic Molecular Solids . Comparison of Band and Hopping Models." Journal of Chemical Physics 1966, 44 (10), 3797-3810.
    34. Konezny, S. J.; Bussac, M. N.; Zuppiroli, L., "Hopping and trapping mechanisms in organic field-effect transistors." Physical Review B 2010, 81 (4), 045313-1-045313-12.
    35. Vissenberg, M. C. J. M.; Matters, M., "Theory of the field-effect mobility in amorphous organic transistors." Physical Review B 1998, 57 (20), 12964-12967.
    36. Holstein, T., "Studies of polaron motion Part II. The "small" polaron (Reprinted from Annals of Physics, vol 8, pg 343-389, 1959)." Annals of Physics 2000, 281 (1-2), 725-773.
    37. Emin, D., "Generalized adiabatic polaron hopping: Meyer-Neldel compensation and Poole-Frenkel behavior." Physical Review Letters 2008, 100 (16), 166602-1-166602-4.
    38. Marcus, R. A., "Free-Energy of Nonequilibrium Polarization Systems .4. A Formalism Based on the Nonequilibrium Dielectric Displacement." Journal of Physical Chemistry 1994, 98 (29), 7170-7174.
    39. Baranovski, S., "Charge Transport in Disordered Solids with Applications in Electronics." John Wiley & Sons: England, 2006.
    40. Mott, N. F.; Davis, E. A., "Electronic Processes in Non-Crystalline Materials." 2nd ed. ed.; Oxford University Press: New York, 1979.
    41. Coropceanu, V.; Cornil, J.; da Silva, D. A.; Olivier, Y.; Silbey, R.; Bredas, J. L., "Charge transport in organic semiconductors." Chemical Reviews 2007, 107 (4), 926-952.
    42. Ruiz, R.; Choudhary, D.; Nickel, B.; Toccoli, T.; Chang, K. C.; Mayer, A. C.; Clancy, P.; Blakely, J. M.; Headrick, R. L.; Iannotta, S.; Malliaras, G. G., "Pentacene thin film growth." Chemistry of Materials 2004, 16 (23), 4497-4508.
    43. Bao, Z.; Locklin, J., "Organic Field-Effect Transistors " CRC press: New York, 2007.
    44. Kang, S. J.; Noh, Y. Y.; Baeg, K. J.; Ghim, J.; Park, J. H.; Kim, D. Y.; Kim, J. S.; Park, J. H.; Cho, K., "Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors." Applied Physics Letters 2008, 92 (5), 052107-1-052107-3.
    45. Weng, S. Z.; Hu, W. S.; Kuo, C. H.; Tao, Y. T.; Fan, L. J.; Yang, Y. W., "Anisotropic field-effect mobility of pentacene thin-film transistor: Effect of rubbed self-assembled monolayer." Applied Physics Letters 2006, 89 (17), 172103-1-172103-3.
    46. Chou, W. Y.; Cheng, H. L., "An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin-film transistor applications." Advanced Functional Materials 2004, 14 (8), 811-815.
    47. Jin, S. H.; Seo, H. U.; Nam, D. H.; Shin, W. S.; Choi, J. H.; Yoon, U. C.; Lee, J. W.; Song, J. G.; Shin, D. M.; Gal, Y. S., "Surface-induced alignment of pentacene by photo-alignment technology for organic thin film transistors." Journal of Materials Chemistry 2005, 15 (47), 5029-5036.
    48. Ichimura, K., "Photoalignment of liquid-crystal systems." Chemical Reviews 2000, 100 (5), 1847-1873.
    49. Sackmann, E., "Photochemically Induced Reversible Color Changes in Cholesteric Liquid Crystals." Journal of the American Chemical Society 1971, 93 (25), 7088-7090.
    50. Takaguchi, Y.; Tajima, T.; Yanagimoto, Y.; Tsuboi, S.; Ohta, K.; Motoyoshiya, J.; Aoyama, H., "Self-assembly and regioselective photodimerization of anthracene having a dendritic substituent." Organic Letters 2003, 5 (10), 1677-1679.
    51. Supported by Industrial Technology Research Institute
    52. Hosemann, R.; Hindeleh, A. M., "Structure of Crystalline and Paracrystalline Condensed Matter." Journal of Macromolecular Science-Physics 1995, B34 (4), 327-356.
    53. Chiang, D. M.; Liu, W. L.; Chen, J. L.; Susuki, R., "PALS and SPM/EFM investigation of charged nanoporous electret films." Chemical Physics Letters 2005, 412 (1-3), 50-54.
    54. Cabral, J. T.; Higgins, J. S.; Yerina, N. A.; Magonov, S. N., "Topography of phase-separated critical and off-critical polymer mixtures." Macromolecules 2002, 35 (5), 1941-1950.
    55. Lei, C. H.; Das, A.; Elliott, M.; Macdonald, J. E., "Conductivity of macromolecular networks measured by electrostatic force microscopy." Applied Physics Letters 2003, 83 (3), 482-484.
    56. Kim, D. H.; Lee, D. Y.; Lee, H. S.; Lee, W. H.; Kim, Y. H.; Han, J. I.; Cho, K., "High-mobility organic transistors based on single-crystalline microribbons of triisopropylisilylethynl pentacene via solution-phase self-assembly." Advanced Materials 2007, 19 (5), 678-682.
    57. Huang, T. S.; Su, Y. K.; Wang, P. C., "Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer." Applied Physics Letters 2007, 91 (9), 092116-1-092116-3.
    58. Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W., "High-mobility polymer gate dielectric pentacene thin film transistors." Journal of Applied Physics 2002, 92 (9), 5259-5263.
    59. Kwon, J. H.; Chung, M. H.; Oh, T. Y.; Bae, H. S.; Park, J. H.; Ju, B. K.; Yakuphanoglu, F., "High-mobility pentacene thin-film phototransistor with poly-4-vinylphenol gate dielectric." Sensors and Actuators a-Physical 2009, 156 (2), 312-316.
    60. Li, D. W.; Guo, L. J., "Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping." Journal of Physics D-Applied Physics 2008, 41 (10), 105115-1-105115-7.
    61. Kim, K. H.; Bong, K. W.; Lee, H. H., "Alternative to pentacene patterning for organic thin film transistor." Applied Physics Letters 2007, 90 (9), 093505-1-093505-3.
    62. Li, D. W.; Guo, L. J., "Micron-scale organic thin film transistors with conducting polymer electrodes patterned by polymer inking and stamping." Applied Physics Letters 2006, 88 (6), 063513-1-063513-3.
    63. Jo, S. J.; Kim, C. S.; Lee, M. J.; Kim, J. B.; Ryu, S. Y.; Noh, J. H.; Ihm, K.; Baik, H. K.; Kim, Y. S., "Inducement of Azimuthal molecular orientation of pentacene by imprinted periodic groove patterns for organic thin-film transistors." Advanced Materials 2008, 20 (6), 1146-1153.
    64. Gates, B. D.; Xu, Q. B.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M., "New approaches to nanofabrication: Molding, printing, and other techniques." Chemical Reviews 2005, 105 (4), 1171-1196.
    65. Owa, S.; Nagasaka, H.; Ishii, Y.; Hirakawa, O.; Yamamoto, T., "Early results show much promise for immersion." Solid State Technology 2004, 47 (5), 43-52.
    66. Jung, G. Y.; Ganapathiappan, S.; Ohlberg, D. A. A.; Olynick, D. L.; Chen, Y.; Tong, W. M.; Williams, R. S., "Fabrication of a 34 x 34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography." Nano Letters 2004, 4 (7), 1225-1229.
    67. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J., "Imprint of Sub-25 Nm Vias and Trenches in Polymers." Applied Physics Letters 1995, 67 (21), 3114-3116.
    68. Koide, Y.; Such, M. W.; Basu, R.; Evmenenko, G.; Cui, J.; Dutta, P.; Hersam, M. C.; Marks, T. J., "Hot microcontact printing for patterning ITO surfaces. Methodology, morphology, microstructure, and OLED charge injection barrier imaging." Langmuir 2003, 19 (1), 86-93.
    69. Wouters, D.; Schubert, U. S., "Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices." Angewandte Chemie-International Edition 2004, 43 (19), 2480-2495.
    70. Aizenberg, J.; Black, A. J.; Whitesides, G. M., "Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports." Nature 1998, 394 (6696), 868-871.
    71. Chou, S. Y.; Krauss, P. R., "Imprint lithography with sub-10 nm feature size and high throughput." Microelectronic Engineering 1997, 35 (1-4), 237-240.
    72. Resnick, D. J.; Mancini, D.; Dauksher, W. J.; Nordquist, K.; Bailey, T. C.; Johnson, S.; Sreenivasan, S. V.; Ekerdt, J. G.; Willson, C. G., "Improved step and flash imprint lithography templates for nanofabrication." Microelectronic Engineering 2003, 69 (2-4), 412-419.
    73. Mack, N. H.; Dong, R.; Nuzzo, R. G., "Quantitative imaging of protein adsorption on patterned organic thin-film arrays using secondary electron emission." Journal of the American Chemical Society 2006, 128 (24), 7871-7881.
    74. Geissler, M.; Xia, Y. N., "Patterning: Principles and some new developments." Advanced Materials 2004, 16 (15), 1249-1269.
    75. Lee, Y. C.; Chiu, C. Y., "Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching." Journal of Micromechanics and Microengineering 2008, 18 (7), 075013-1-075013-7.
    76. Swiggers, M. L.; Xia, G.; Slinker, J. D.; Gorodetsky, A. A.; Malliaras, G. G.; Headrick, R. L.; Weslowski, B. T.; Shashidhar, R. N.; Dulcey, C. S., "Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics." Applied Physics Letters 2001, 79 (9), 1300-1302.
    77. Ueno, N.; Kera, S., "Electron spectroscopy of functional organic thin films: Deep insights into valence electronic structure in relation to charge transport property." Progress in Surface Science 2008, 83 (10-12), 490-557.
    78. Cornil, J.; Calbert, J. P.; Bredas, J. L., "Electronic structure of the pentacene single crystal: Relation to transport properties." Journal of the American Chemical Society 2001, 123 (6), 1250-1251.
    79. Fritz, S. E.; Martin, S. M.; Frisbie, C. D.; Ward, M. D.; Toney, M. F., "Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction." Journal of the American Chemical Society 2004, 126 (13), 4084-4085.
    80. Bouchoms, I. P. M.; Schoonveld, W. A.; Vrijmoeth, J.; Klapwijk, T. M., "Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO2 substrates." Synthetic Metals 1999, 104 (3), 175-178.
    81. Ruiz, R.; Papadimitratos, A.; Mayer, A. C.; Malliaras, G. G., "Thickness dependence of mobility in pentacene thin-film transistors." Advanced Materials 2005, 17 (14), 1795-1798.
    82. Mattheus, C. C.; Dros, A. B.; Baas, J.; Meetsma, A.; de Boer, J. L.; Palstra, T. T. M., "Polymorphism in pentacene." Acta Crystallographica Section C-Crystal Structure Communications 2001, 57, 939-941.
    83. Dimitrakopoulos, C. D.; Brown, A. R.; Pomp, A., "Molecular beam deposited thin films of pentacene for organic field effect transistor applications." Journal of Applied Physics 1996, 80 (4), 2501-2508.
    84. Ji, T.; Jung, S.; Varadan, V. K., "On the correlation of postannealing induced phase transition in pentacene with carrier transport." Organic Electronics 2008, 9 (5), 895-898.
    85. Gundlach, D. J.; Jackson, T. N.; Schlom, D. G.; Nelson, S. F., "Solvent-induced phase transition in thermally evaporated pentacene films." Applied Physics Letters 1999, 74 (22), 3302-3304.
    86. Kakudate, T.; Yoshimoto, N.; Saito, Y., "Polymorphism in pentacene thin films on SiO2 substrate." Applied Physics Letters 2007, 90 (8), 081903-1-081903-3.
    87. Kang, S. J.; Noh, M.; Park, D. S.; Kim, H. J.; Whang, C. N.; Chang, C. H., "Influence of postannealing on polycrystalline pentacene thin film transistor." Journal of Applied Physics 2004, 95 (5), 2293-2296.
    88. Steudel, S.; Janssen, D.; Verlaak, S.; Genoe, J.; Heremans, P., "Patterned growth of pentacene." Applied Physics Letters 2004, 85 (23), 5550-5552.
    89. Yang, C.; Yoon, J.; Kim, S. H.; Hong, K.; Chung, D. S.; Heo, K.; Park, C. E.; Ree, M., "Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors." Applied Physics Letters 2008, 92 (24), 243305-1-243305-3.
    90. Murakami, Y.; Tomiya, S.; Koshitani, N.; Kudo, Y.; Satori, K.; Itabashi, M.; Kobayashi, N.; Nomoto, K., "Microstructural Study of the Polymorphic Transformation in Pentacene Thin Films." Physical Review Letters 2009, 103 (14), 146102-1-146102-4.
    91. Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K., "Origin of attraction and directionality of the x/x interaction: Model chemistry calculations of benzene dimer interaction." Journal of the American Chemical Society 2002, 124 (1), 104-112.
    92. Walsh, T. R., "An ab initio study of the low energy structures of the naphthalene dimer." Chemical Physics Letters 2002, 363 (1-2), 45-51.
    93. Pickholz, M.; dos Santos, M. C., "Theoretical investigation on pi-dimer formation in oligothiophenes." Journal of Molecular Structure-Theochem 2005, 717 (1-3), 99-106.
    94. Wick, C. D.; Siepmann, J. I.; Sheth, A. R.; Grant, D. J. W.; Karaborni, S., "Monte Carlo calculations for the solid-state properties of warfarin sodium 2-propanol solvate." Crystal Growth & Design 2006, 6 (6), 1318-1323.
    95. Cheng, H. L.; Lin, J. W., "Controlling Polymorphic Transformations of Pentacene Crystal through Solvent Treatments: An Experimental and Theoretical Study." Crystal Growth & Design 2010, 10 (10), 4501-4508.
    96. Drummy, L. F.; Martin, D. C., "Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films." Advanced Materials 2005, 17 (7), 903-907.
    97. Mattheus, C. C.; Dros, A. B.; Baas, J.; Oostergetel, G. T.; Meetsma, A.; de Boer, J. L.; Palstra, T. T. M., "Identification of polymorphs of pentacene." Synthetic Metals 2003, 138 (3), 475-481.
    98. Werzer, O.; Stadlober, B.; Haase, A.; Oehzelt, M.; Resel, R., "Full X-ray pattern analysis of vacuum deposited pentacene thin films." European Physical Journal B 2008, 66 (4), 455-459.
    99. Mannsfeld, S. C. B.; Virkar, A.; Reese, C.; Toney, M. F.; Bao, Z. N., "Precise Structure of Pentacene Monolayers on Amorphous Silicon Oxide and Relation to Charge Transport." Advanced Materials 2009, 21 (22), 2294-2298.
    100. Mayer, A. C.; Kazimirov, A.; Malliaras, G. G., "Dynamics of bimodal growth in pentacene thin films." Physical Review Letters 2006, 97 (10), 105503-1-105503-4.
    101. Katz, H. E., "Recent advances in semiconductor performance and printing processes for organic transistor-based electronics." Chemistry of Materials 2004, 16 (23), 4748-4756.
    102. Chabinyc, M. L.; Salleo, A., "Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays." Chemistry of Materials 2004, 16 (23), 4509-4521.
    103. Ong, B. S.; Wu, Y. L.; Liu, P.; Gardner, S., "High-performance semiconducting polythiophenes for organic thin-film transistors." Journal of the American Chemical Society 2004, 126 (11), 3378-3379.
    104. Chu, C. W.; Li, S. H.; Chen, C. W.; Shrotriya, V.; Yang, Y., "High-performance organic thin-film transistors with metal oxide/metal bilayer electrode." Applied Physics Letters 2005, 87 (19), 193508-1-193508-3.
    105. Kim, W. K.; Hong, K.; Leea, J. L., "Enhancement of hole injection in pentacene organic thin-film transistor of O-2 plasma-treated Au electrodes." Applied Physics Letters 2006, 89 (14), 142117-1-142117-3.
    106. Park, J.; Kang, S. I.; Jang, S. P.; Choi, J. S., "Interface characteristics between Au electrode and pentacene layer in organic thin-film transistors." Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2005, 44 (1B), 648-651.
    107. Pyo, K. S.; Song, C. K., "The effects of simultaneous treatment of SiO2 gate and Au electrode with octadecyltrichlorosilane and charge transfer molecules on characteristics of pentacene thin film transistors." Thin Solid Films 2005, 485 (1-2), 230-234.
    108. Lee, K.; Kim, J. H.; Im, S., "Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric." Applied Physics Letters 2006, 88 (2), 023504-1-023504-3.

    下載圖示 校內:2012-11-24公開
    校外:2013-11-24公開
    QR CODE