簡易檢索 / 詳目顯示

研究生: 邱千軒
Chiu, Chien-Hsuan
論文名稱: 鹽水層二氧化碳封存之溶液相及離子相二氧化碳前鋒推進方程式之研究
Study of Frontal Advance Equation of Aqueous and Ionized CO2 in Saline Aquifer CO2 Geo-Sequestration
指導教授: 謝秉志
Hsieh, Bieng-Zih
共同指導教授: 林再興
Lin, Zsay-Shing
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 163
中文關鍵詞: 二氧化碳地質封存前鋒推進方程式離子相二氧化碳延遲因子
外文關鍵詞: CO2 geological sequestration, Frontal advance equation, Ionized CO2, Retardation factor
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是研究二氧化碳注入至鹽水層時,溶液相二氧化碳及離子相二氧化碳團塊之前鋒推進方程式,以推估不同相態的二氧化碳的移棲距離或速度,並研究具流動性的二氧化碳(包括超臨界相、溶液相及離子相二氧化碳)之移動特性。
    本研究利用數值模擬法進行溶液相及離子相二氧化碳前鋒推進方程式之研究,並研究溶解作用及地球化學反應作用對超臨界相二氧化碳移棲速度之影響。研究結果會利用超臨界相二氧化碳之移棲速度之解析解來驗證數值模擬之正確性。
    本研究所獲得的結果及結論為:(1)本研究推求出溶液相及離子相二氧化碳在鹽水層移棲之前鋒推進方程式。此方程式不但可以計算溶液相及離子相二氧化碳之移棲距離,也可以推求出超臨界相二氧化碳的移棲速度;(2)在各種具流動性之二氧化碳的移棲距離中,溶液相二氧化碳的移棲距離最遠,其次為離子相二氧化碳,最後為超臨界相二氧化碳。溶液相二氧化碳前鋒與超臨界相二氧化碳前鋒,以及離子相二氧化碳前鋒與超臨界相二氧化碳前鋒之間,皆含有一等距離差;(3)二氧化碳注儲至鹽水層後,受到溶解作用及地球化學反應作用影響,超臨界相二氧化碳在鹽水層的移棲速度會減慢。當使用解析解或作圖法估算超臨界相二氧化碳之移棲速度時,需要使用延遲因子來進行速度修正;(4)在超臨界相二氧化碳之移棲速度之推求中,二氧化碳溶解作用之影響性遠大於解離作用之影響性。換言之,超臨界相二氧化碳主要受溶解作用影響而降低其速度。

    The purpose of this study was to analyze the frontal advance equations of aqueous and ionized CO2 when CO2 is injected and stored in a deep saline aquifer, and to estimate the migration distances and velocities of the different phases of CO2. The flow behaviors of three mobile phases of CO2—supercritical, aqueous, and ionized—were studied.
    The numerical simulation method was used in this study to derive the frontal advance equations of aqueous and ionized CO2, and to study the effects of dissolution and geochemical reactions on the velocity of supercritical phase CO2. The analytical solution of velocity of supercritical phase CO2 derived from Noh’s theory was used to verify the numerical simulation results.
    The major results and conclusions obtained from this study are:(1) The frontal advance equations of aqueous and ionized CO2 were derived. The migration distances of aqueous and ionized CO2, as well as the velocity of supercritical phase CO2, can be estimated from the derived equations. (2) The migration distance after the CO2 was injected into a saline aquifer, from far to near, were aqueous, ionized, and supercritical phases. There are fixed distances between the front of aqueous phase CO2 and supercritical phase CO2, and between the front of ionized phase CO2 and supercritical phase CO2. (3) Dissolution and geochemical reactions will decrease the velocity of supercritical phase CO2. The retardation factor can be used to estimate the affected velocity of supercritical phase CO2 when the analytical method or the graphical method is adopted. (4) The dissolution effect has a great effect on the velocity of supercritical phase CO2 than do geochemical effects. In other words, the decrease of velocity of supercritical phase CO2 was caused primarily by the dissolution effect.

    中文摘要----------------------------------------------I 英文摘要----------------------------------------------III 誌謝-------------------------------------------------V 目錄-------------------------------------------------VII 表目錄-----------------------------------------------XII 圖目錄-----------------------------------------------XVI 符號表-----------------------------------------------XXIII 第一章 前言------------------------------------------1 1.1研究背景------------------------------------------1 1.2二氧化碳封存機制-----------------------------------2 1.3二氧化碳監測--------------------------------------4 1.4二氧化碳注入至鹽水層之相態變化-----------------------5 1.4.1超臨界相二氧化碳---------------------------------6 1.4.2溶液相二氧化碳----------------------------------6 1.4.3離子相二氧化碳-----------------------------------7 第二章 研究目的---------------------------------------8 第三章 文獻回顧---------------------------------------9 3.1前鋒理論------------------------------------------9 3.2二氧化碳封存機制----------------------------------10 3.3氣相或超臨界相二氧化碳移棲行為-----------------------11 3.4溶液相二氧化碳移棲行為------------------------------13 第四章 理論基礎---------------------------------------16 4.1耦合地球化學理論之前鋒速度解析解方程式------------------16 4.1.1地球化學質量守恆方程式-----------------------------16 4.1.2波及波速-----------------------------------------21 4.1.2.1延展波---------------------------------------21 4.1.2.1.1延展波的特定速度-----------------------------21 4.1.2.2銳利波----------------------------------------24 4.1.2.2.1銳利波的特定速度------------------------------24 4.1.3二氧化碳前鋒移棲速度方程式--------------------------25 4.1.4耦合地球化學理論之分相流理論(作圖法)----------------28 4.2延遲因子之計算--------------------------------------30 4.2.1氣相及溶液相二氧化碳濃度計算-------------------------31 4.2.2碳酸氫根離子及碳酸根離子濃度計算----------------------34 第五章 鹽水層數值模式建立與驗證---------------------------40 5.1鹽水層數值模式建立----------------------------------40 5.1.1模型設計與地層參數設定-----------------------------40 5.1.2注入井與生產井操作條件設計---------------------------42 5.2二氧化碳封存機制之鹽水層數值模式建立--------------------42 5.2.1構造封存機制之鹽水層數值模式建立------------------42 5.2.2溶解封存機制之鹽水層數值模式建立------------------43 5.2.3離子封存機制之鹽水層數值模式建立------------------44 5.3鹽水層數值模式驗證--------------------------------45 第六章 結果-----------------------------------------48 6.1 解析解計算超臨界相二氧化碳前鋒移棲速度----------------48 6.2 超臨界相二氧化碳氣飽和度、溶液相二氧化碳濃度及離子相 二氧化碳濃度隨距離變化之數值模擬結果------------------49 6.3 超臨界相、溶液相及離子相二氧化碳前鋒推進距離之數 值結果-------------------------------------------51 6.4 溶液相及離子相二氧化碳前鋒推進距離差之分析-----------53 第七章 討論-----------------------------------------56 7.1不同封存機制對超臨界相二氧化碳前鋒移棲速度之影響------56 7.2不同封存機制對溶液相二氧化碳前鋒推進距離差之影響-------58 7.3不同封存機制下各種相態二氧化碳前鋒推進距離之比較-------59 7.4地層初始壓力、地層溫度及地層水鹽度對二氧化碳溶解度 、溶液相及離子相二氧化碳前鋒推進距離差之影響-----------59 7.4.1地層初始壓力對二氧化碳溶解度、"∆" "x" _(〖"CO" 〗_"2(aq)" ) 及"∆" "x" _(〖"HCO" 〗_"3" ^"-" )之敏感度分析-------60 7.4.2地層溫度對二氧化碳溶解度、"∆" "x" _(〖"CO" 〗_"2(aq)" )及"∆" "x" _(〖"HCO" 〗_"3" ^"-" )之敏感度分析-------------61 7.4.3地層水鹽度對二氧化碳溶解度、"∆" "x" _(〖"CO" 〗_"2(aq)" ) 及"∆" "x" _(〖"HCO" 〗_"3" ^"-" )之敏感度分析--------62 7.5地層截面積、地層孔隙率、二氧化碳注入率及相對滲透率曲線對溶液相 及離子相二氧化碳前鋒推進距離差之影響-----------------------63 7.5.1地層截面積對"∆" "x" _(〖"CO" 〗_"2(aq)" )及"∆" "x" _(〖"HCO" 〗_"3" ^"-" )之敏感度分析-----------------64 7.5.2地層孔隙率對"∆" "x" _(〖"CO" 〗_"2(aq)" )及"∆" "x" _(〖"HCO" 〗_"3" ^"-" )之敏感度分析----------------64 7.5.3二氧化碳注入率對"∆" "x" _(〖"CO" 〗_"2(aq)" )及"∆" "x" _(〖"HCO" 〗_"3" ^"-" )之敏感度分析----------------65 7.5.4相對滲透率曲線對"∆" "x" _(〖"CO" 〗_"2(aq)" )及"∆" "x" _(〖"HCO" 〗_"3" ^"-" )之敏感度分析----------------66 7.6溶液相及離子相二氧化碳前鋒推進距離方程式之推求--------------67 第八章 結論與建議----------------------------------------72 8.1結論----------------------------------------------72 8.2建議-----------------------------------------------74 參考文獻-----------------------------------------------75 附錄A 不同封存機制之鹽水層數值模式驗證-----------------------151 A.1構造封存機制之鹽水層數值模式驗證-------------------------151 A.2含溶解封存機制之鹽水層數值模式驗證---------------------152 附錄B 不同封存機制之超臨界相與溶液相二氧化碳前鋒推進距離之結果--154 B.1構造封存機制之超臨界相與溶液相二氧化碳前鋒推進距離之結果-----154 B.2含溶解封存機制之超臨界相與溶液相二氧化碳前鋒推進距離之結果----156

    1.Assayag, N., Matter, J., MAder, M., Goldberg, D., and Agrinier, P., CO2 Ionic Trapping at Meta-edimentary Aquifer, Following a CO2 Injection Push-pull Test, Energy Procedia I, Pages 2357-2360, 2009.
    2.Benson, S.M., Monitoring Carbon Dioxide Sequestration in Deep Geological Formation for Inventory Verification and Carbon Credist, SPE 102833, 2006.
    3.Bielinski, A., Kopp, A., Schutt, H., and Class, H., Monitoring of CO2 plumes during storage in geological formations using temperature signals:Numerical investigation, International Journal of Greenhouse Gas Control 2, Pages 319-328, 2008.
    4.Buckley, S.E., and Leverett, M.C., Mechanism of fluid displacements in sands, Transactions of the AIME 146, Pages 107–116, 1942.
    5.Burton, M., Kumar, N., and Bryant, S.L., Time-Dependent Injectivity During CO2 Storage in Aquifers, this paper was presented SPE-DOE Symposium on Improved Oil Recovery, 20-23 April 2008, Tulsa, Oklahoma, USA, SPE 113937, 2008.
    6.Corey, A.T., The Interrelation Between Gas and Oil Relative Permeabilities, Prod Montly 19(1), Pages 38-41, 1954.
    7.Computer Modelling Group Ltd., Calgary, Alberta, User’s Guide GEM Advanced Oil/Gas Reservoir Simulator, 2011.
    8.Cooperative Research Centre for Greenhouse Gas Technologies, CO2CRC, 2012.
    9.Doughty, C., Myer, L.R., and Oldenburg, C.M., Predictions of long-term behavior of large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California, Energy Procedia 1, Pages 3291-3298, 2009.
    10.DTI, Monitoring Technologies for the Geological Storage of CO2, Technology Status Report, 2005.
    11.Eke, P.E., Naylor, M., Haszeldine, S., and Curtis, A., CO2-Brine Surface Dissolution and Injection:CO2 Storage Enhancement, SPE 124711, 2009.
    12.Ennis-King, J.P., Gibson-Poole, C.M., Lang, S.C., and Paterson, L., Long term numerical simulation of geological storage of CO2 in the Petrel sub-basin, North West Australia. Proceedings of the Sixth International Conference on Greenhouse Gas Control Technologies, Volume I. Pergamon, Pages 507–511, 2003.
    13.Gunter, W.D., Bachu, S., and Benson, S., The Role of Hydrogeological and Geochemical Trapping in Sedimentary Basins for Secure Geological Storage of Carbon Dioxide, Geological Society, London, Special Publications, January 1, Volume 233, Pages 129-145, 2004.
    14.Gunter, W.D., Talman, S., and Perkins, E., Geosequestration Geochemistry, Proceedings of the Asia Pacific CBM Symposium, 2008.
    15.Hesse, M.A., Tchelepi, H.A., and Orr Jr, F.M., Scaling Analysis of the Migration of CO2 in Saline Aquifers, this paper was presented SPE Annual Technical Conference and Exhibition, 24-27 September 2006, San Antonio, Texas, USA. SPE 102796, 2006.
    16.Hichon, B., Gunter, W.D., and Gentzis, T., The serendipitous association of sedimentary basins and greenhouse gases, In Proc., American Chemical Soc. Symposium on CO2 Capture, Utilization and Disposal, Orlando, Florida, 25-29, 1996.
    17.Juanes, R., Spiteri, E.J., Orr Jr., F.M., and Blunt, M.J., Impact of relative permeability hysteresis on geological CO2 storage, Water Resources Research, Volume 42, W12418, 2006, doi: 10.1029/2005WR004806.
    18.Kempka, T., Kuhn, M., Class, H., Frykman, P., Kopp, A., Nielsen, C.M., and Probst, P., Modelling of CO2 arrival time at Ketzin – Part I, International Journal of Greenhouse Gas Control 4, Pages 1007-1015, 2010.
    19.Koperna, G.J., Kuuskraa, V.A., Riestenberg, D.E., Rhudy, R., Trautz, R., Hill, G., and Esposito, R.A., The SECARB Anthropogenic Test:The First US Integrated CO2 Capture, Transportation, and Storage Test, CMTC 151230, 2012.
    20.Kumar, A., Noh, M.H., Sepehrnoori, K., Pope, G.A., Bryant, S.L., and Lake, L.W., Simulating CO2 storage in deep saline aquifers. Carbon Dioxide Capture for Storage in Deep Geologic Formations—Results from the CO2 Capture Project, Volume 2: Geologic Storage of Carbon Dioxide with Monitoring and Verification. Elsevier, London, UK, Pages 898–977, 2005.
    21.Kumar, A., Ozah, R., Noh, M., Pope, G.A., Bryant, S., Sepehrnoorl, K., and Lake, L.W., Reservori Simulation of CO2 Storage in Deep Saline Aquifers, SPEJ, Volume 10, number 3, Pages 336-348, SPE-89343-PA, 2005.
    22.Lake, L.W., Bryant, S.L., and Araque-Martinez, A.N., Geochemistry and Fluid Flow, 2002.
    23.Land, C.S., Calculation of Imbibition Realtive Permeability for Two- and Three-Phase Flow from Rock Properties, SPE Journal, Pages 149-156, 1968.
    24.Li, Y.-K. and Nghiem, L.X., Phase Equilibria of Oil, Gas and Water/Brine Mixtures from a Cubic Equation of State and Henry's Law, Can. J. Chem. Eng, Pages 486-496, 1986.
    25.MacMinn, C.W., Analytical Modeling of CO2 Migration in Saline Aquifers for Geological CO2 Storage, Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering, 2008.
    26.MacMinn, C.W., Szulczewski, M.L., and Juanes, R., CO2 migration in saline aquifers: regimes in migration with dissolution, Energy Procedia 4, Pages 3904-3910, 2011.
    27.Marini, L., Geological Sequestration of Carbon Dioxide, Thermodynamics, Kinetics, and Reaction Path Modeling, 2007.
    28.National Energy Technology Laboratory, NETL, Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations, 2009.
    29.Nghiem, L., Shrivastava, V., Tran, D., Kohse, B., Hassam, M., and Yang, C., Simulation of CO2 Storage in Saline Aquifers, SPE 125848, 2009.
    30.Noh, M., Lake, L.W., Bryant, S.L., and Araque-Martinez, A., Implications of Coupling Fractional Flow and Geochemistry for CO2 injection in Aquifers, SPE Reservoir Evaluation & Engineering, Volume 10, Number 4, 2007.
    31.Obi, E-O.J. and Blunt, M.J., Streamline-Based Simulation of Carbon Dioxide Storage in a North Sea Aquifer, Water Resources Research, Volume 42, W03414, 2006.
    32.Orr, Jr., F.M, Theory of Gas Injection Processes, 2005.
    33.Pruess, K., Xu, T., Apps, J., and Garcia, J., Numerical Modeling of Aquifer Disposal of CO2, SPE Journal, Volume 8, Number 1, Pages 49-60, 2003.
    34.Quisel, N., Rampnoux, N., and Thomas, S., Environmental Assessment of CO2 Storage Site:Specific Montoring Program and Study Needed to Assess Environmental Impacts, SPE 137983, 2010.
    35.Riding, J.B., and Rochelle C.A., The IEA Weyburn CO2 Monitoring and Storage Project, Final Report of the European Research Team, 2005.
    36.Riding, J.B., and Rochelle C.A., Subsurface Characterisation and Geological Monitoring of the CO2 Injection Operation at Weyburn, Saskatchewan, Canada, Geological Society, London, Special Publications, Volume 313, Issue 1, Pages 227-256, 2009.
    37.Saripalli, P., and McGrail, P., Semi-analytical approaches to modeling deep well injection of CO2 for geological sequestration, Energy Conversion and Management 43, Pages 185-198, 2002.
    38.Silberberg, M.S., Chemistry, the Molecular Nature of Matter and Cange, 2006.
    39.Takasawa, T., Kawamura, T., and Arihara, N., Effects of CO2 Density and Solubility on Storage Behavior in Saline Aquifers, SPE 133743, 2010.
    40.Thibeau, S., Nghiem, L., and Ohkuma, H., A Modeling Study of the Role of Selected Minerals in Enhancing CO2 Mineralization During CO2 Aquifer Storage This paper was prepared for presentation at the 2007 SPE Annual Technical Conference and Exhibition held in Anaheim, California, U.S.A., 11–14 November, SPE 109739, 2007.
    41.Ulker, B., Alkan, H., and Pusch, G., Implications of the Phase-Solubility Behavior on the Performance Predictions of the CO2 Trapping in Depleted Gas Reservoirs and Aquifers, SPE 107189, 2007.
    42.United States Environmental Protection Agency, Geologic CO2 Sequestraion Technology and Cost Analysis, Technical Support Document, 2008.
    43.二氧化碳捕獲與封存技術網,2012。
    44.台灣中油股份有限公司,礦化封存機制對二氧化碳注儲能力影響模擬試驗期末報告,2011(民國100年)。

    下載圖示 校內:2015-08-20公開
    校外:2015-08-20公開
    QR CODE