簡易檢索 / 詳目顯示

研究生: 林仲信
Lam, Trong-Tin
論文名稱: 奈米摩擦發電機在不同微針陣列結構對性能的影響及其應用
Effect of microneedle-array structure on output performance of triboelectric nanogenerators and its application
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 115
中文關鍵詞: 獵能器摩擦發電機低/高深宽比微針陣列壓力傳感器二氧化碳雷射
外文關鍵詞: energy harvester, Triboelectric Nanogenerator, low and high aspect ratio microneedle array, pressure sensor, CO2 Laser
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在當前社會發展趨勢中,綠色能源和可再生能源變得越來越重要。人們越來越重視由化石燃料對環境造成負面影響,且對可持續環保的替代能源的需求不斷增長。因此,許多研究開始利用環境中浪費的機械能並將其轉化為其他便於利用的能源。同時,隨著物聯網 (IoT) 的發展,製造工業對傳感器的需求上升,因此尋找自供電的傳感系統成為物聯網發展的重點。摩擦奈米發電機 (TENG) 具有將機械能轉化為電能、高輸出性能、高效率、重量輕、成本低、易於製造和材料選擇多樣性等特點。它不僅滿足了對綠色能源的需求,還可以應用於自供電的傳感器系統。在這項研究中,摩擦奈米發電機由PMMA、PDMS 和Al組成,並利用垂直接觸分離模式來發電。摩擦奈米發電機的表面結構主要採用CO2雷射燒蝕加工作為主要製造方法,通過模具翻摸技術開發PDMS微針陣列表面。與其它摩擦奈米發電機相比,我們開發的摩擦奈米發電機的製程具有環保、容易製作、製程時間短及成本低的特性,而其它TENG除製程不環保外、成本也較高且製程複雜。
    本研究中提出的高深寬比 (High-AR) 微針陣列結構TENG的開路電壓為194.4 V,於1 MΩ負載電阻下的輸出電流為109.6 μA,分別為平面(無結構)PDMS-TENG 3.56和4.12倍。在瞬時功率方面,與平面PDMS-TENG相比,性能大幅提升了17.2倍,達到12.1 mW。 此外,我們將其應用於LED照明、耐用性和電容器充電的測試。具有最高的輸出性能的高深寬比微針陣列結構TENG,可以點亮595個綠色LED,這證明其適合應用於照明以及警示燈作用。本文還將討論不同深寬比的摩擦層微針陣列結構TENG的力靈敏度,並分析其適用範圍。在高壓區域低深寬比 (Low-AR) 微針陣列結構TENG具有較佳的力靈敏度達 0.4 V/kPa, R2 (判定係數)為0.99; 而在低壓區域高深寬比 (High-AR) 微針陣列結構TENG有最佳的力靈敏度16.868 V/kPa,判定係數R2 (判定係數)為0.97。不同深寬比的結構TENG可應用於不同壓力區域的壓力傳感器,如老年人跌倒的監測處理、自供電開關或人機界面控制器等健康和醫療的照護產業,未來可以發展為智能家居和工業4.0的壓力傳感器。

    In the current social development trend, green energy and renewable energy sources have become increasingly important. As people become more aware of the negative impact of fossil fuels on the environment, there has been a growing demand for alternative sources of energy that are sustainable and environmentally friendly. So many people start to do research on mechanisms to utilize wasted ambient energy and convert it into another form of energy. At the same time, with the development of the Internet of Things (IoT), industrial production will rely more on sensors, so finding a self-powered sensing system will be the focus of IoT development. Triboelectric Nanogenerator (TENG) has the characteristics of converting mechanical energy into electricity, high output performance, high efficiency, low weight and cost, easy manufacture, and a variety of material options. It not only meets the demand for green energy but can also be used as a self-powered sensor system.
    In this study, the TENG consists of PMMA, PDMS, and aluminum, and it will work with contact and separation modes. The TENG is made using a CO2 laser ablation process as the main fabrication method to develop a microneedle array surface of PDMS through mold forming. Compared with others, this TENG is an eco-friendly, easy, short-time fabrication, and low-cost, while others are not eco-friendly, high-cost, and complicated to fabricate. The open-circuit voltage of the high aspect ratio (AR) microneedle array structure TENG suggested in this work is 194.4 V, and the output current at 1MΩ load resistance is 109.6 μA, which are 3.56 and 4.12 times higher than that of flat surface (non-structure) PDMS-TENG. In terms of instantaneous power, the performance has been greatly improved by 17.2 times to 12.1 mW when compared to the flat surface (non-structure) PDMS-TENG. Also, it is utilized in the testing of LED lighting, durability, and capacitor charging. The fact that the high aspect ratio microneedle array structure TENG has the highest output performance, which can light 595 green-colored LEDs, demonstrates that it is suitable for use in emergency exit lights. This article will also discuss the mechanical sensitivity of different aspect ratios microneedle array structures in the triboelectric layer of TENG and analyze its range of applications. The low-AR MN-PDMS TENG exhibits high mechanical sensitivity of 0.4 V/kPa in the high-pressure range, with a coefficient determination (R2) value of 0.99. On the other hand, the high-AR MN-PDMS TENG has good mechanical sensitivity in the low-pressure range, reaching up to 16.868 V/kPa, with a coefficient determination (R2) value of 0.97. The different aspect ratio microneedle structures of TENG can be applied to pressure sensors in various suitable application fields, such as monitoring the falls event of elderly people which can support the health and medical care industry, and self-powered switches that can be developed in human-machine interface control. These applications also can be developed into smart homes and Industry 4.0 in the future.

    摘要 i ABSTRACT iii ACKNOWLEDGEMENT v TABLE OF CONTENTS vi LIST OF FIGURES x LIST OF TABLES xvi CHAPTER 1 INTRODUCTION 1 1.1 Preface 1 1.2 Research Background and Motivation 5 1.3 Architecture of This Paper 8 CHAPTER 2 LITERATURE REVIEW 11 2.1 The technical origin of TENG 11 2.2 Basic Principle of the TENG 12 2.3 Working mode of the TENG 13 2.3.1 Contact and Separation Mode 14 2.3.2 Lateral Sliding Mode 17 2.3.3 Single Electrode Mode 19 2.3.4 Freestanding Triboelectric Layer Mode 21 2.4 Strategies for improving output electrical performance of TENG 23 2.4.1 Surface morphology of triboelectric layer 23 2.4.2 Influence of dielectric thickness and relative permittivity of materials on output performance 30 2.4.3 Impact of environmental factors 33 2.5 TENG Applications 35 2.5.1 TENG Work as Power Supply 37 2.5.2 TENG Work as Force and Pressure Sensor 39 2.5.3 TENG Work as Tactile Sensor 43 2.5.4 TENG Work as Body motion sensor 45 2.5.5 TENG for Human-machine interfacing (HMI) 48 CHAPTER 3 EXPERIMENTAL METHODS 51 3.1 Experimental Materials 51 3.1.1 Polymethylmethacrylate (PMMA) 51 3.1.2 Polydimethylsiloxane (PDMS) 52 3.2 Experimental Equipment 53 3.2.1 CO2 Laser (CorelDraw) 53 3.2.2 Ultrasonic Cleaner 54 3.2.3 Weight Scales 55 3.2.4 Air Pump 56 3.2.5 O2 Plasma Chamber 56 3.2.6 Furnace 57 3.2.7 Load cell digital indicator 58 3.2.8 Optical Microscope 58 3.2.9 HIOKI 8870-20 59 3.3 Fabrication of the TENG Triboelectric layer 60 3.3.1 Production process of acrylic microneedle master mold 60 3.3.2 Fabrication of microneedle array structure PDMS-TENG 62 3.3.3 Self-assembled pressure sensor mechanism 64 3.4 Setup for Testing the TENG 65 3.4.1 Setup for testing the MN-PDMS Film’s Performance 65 3.4.2 Combination of linear motor actuation test platform (electric motor) and force sensor (load cell) 66 CHAPTER 4 RESULTS AND DISCUSSION 68 4.1 Effect of laser processing parameters on microneedle array structure triboelectric layer 68 4.1.1 Composite CO2 laser parameter 68 4.1.2 Optical Microscope (OM) viewing of Microneedle-array structure 69 4.2 Output performance of different aspect ratio (AR) microneedle-array structure PDMS-TENG 72 4.2.1 Effect of Aspect Ratio (AR) microneedle-array structure on power generation efficiency. 72 4.2.2 Instantaneous power measurement 76 4.3 Influence of different PDMS-base thicknesses on output performance of TENG 78 4.4 Application capability of high-AR MN-PDMS TENG to electronic component. 81 4.4.1 Durability Test 82 4.4.2 Capacitor Charging Performance 83 4.4.3 Light-emitting diode (LED) lighting test 84 4.5 Application in pressure sensor 85 4.5.1 Mechanical sensitivity analysis of different Aspect Ratio microneedle-array structured TENG 86 4.5.2 Arduino Uno integrated circuit design 94 4.5.3 Self-powered sensor for switch 95 4.5.4 Self-powered sensor for falling detection system 97 CHAPTER 5 CONCLUSIONS 102 5.1 Conclusions and Contributions 102 5.2 Future Work and Suggestions 104 REFERENCES 106

    [1] P. A. Ostergaard, N. Duic, Y. Noorollahi & S. Kalogirou, “Latest progress in Sustainable Development using renewable energy technology.” Renewable Energy, 162, 1554-1562, 2020.
    [2] I. Gunnarsdóttir, B. Davidsdottir, E. Worrell & S. Sigurgeirsdóttir, “Sustainable energy development: History of the concept and emerging themes.” Renewable and Sustainable Energy Reviews, 141, 110770, 2021.
    [3] B. Nastasi, N. Markovska, T. Puksec, N. Duić & A. Foley, “Renewable and sustainable energy challenges to face for the achievement of Sustainable Development Goals.” Renewable and Sustainable Energy Reviews, 157, 112071, 2022.
    [4] S. Eslami, A. Gholami, A. Bakhtiari, M. Zandi & Y. Noorollahi, “Experimental investigation of a multi-generation energy system for a nearly zero-energy park: A solution toward sustainable future.” Energy Conversion and Management, 200, 112107, 2019.
    [5] D. A. kez, A. M. Foley, N. McIlwaine, D. J. Morrow, B. P. Hayes, M. A. Zehir, L. Mehigan, B. Papari, C. S. Edrington & M. Baran, “A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation.” Energy, 205, 117671, 2020.
    [6] N. Yildirim, S. Parmanto & G. G. Akkurt, “Thermodynamic assessment of downhole heat exchangers for geothermal power generation.” Renewable Energy, 141, 1080-1091, 2019.
    [7] R. Alrefai, A. M. Alrefai, K. Y. Benyounis & J. Stokes, “An Evaluation of the Effects of the Potato Starch on the Biogas Produced from the Anaerobic Digestion of Potato Wastes.” Energies, 13(9), 2399, 2020.
    [8] M. Zhou, M. S. H. Al-Furjan, J. Zou & W. Liu, “A review on heat and mechanical energy harvesting from human–Principles, prototypes and perspectives.” Renewable and Sustainable Energy Reviews, 82, 3582-3609, 2018.
    [9] Z. L. Wang, “On Maxwell's displacement current for energy and sensors: the origin of nanogenerators.” Materials Today, 20(2), 74-82, 2017.
    [10] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O'Donnell, C. R. Saha & S. Roy, “A micro electromagnetic generator for vibration energy harvesting.” Journal of Micromechanics and microengineering, 17(7), 1257, 2007.
    [11] C. R. Saha, T. O’donnell, N. Wang & P. McCloskey, “Electromagnetic generator for harvesting energy from human motion.” Sensors and Actuators A: Physical, 147(1), 248-253, 2008.
    [12] D. G. Kim, S. N. Yun, Y. B. Ham & J. H. Park, “Energy harvesting strategy using piezoelectric element driven by vibration method.” Wireless Sensor Network, 2(02), 100, 2010.
    [13] R. Caliò, U. B. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. De Petris, & C. M. Oddo, “Piezoelectric energy harvesting solutions.” Sensors, 14(3), 4755-4790, 2014.
    [14] A. Dudka, D. Galayko & P. Basset, “Smart adaptive power management in electrostatic harvester of vibration energy.” In Power MEMS Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, (pp. 257-260), 2009.
    [15] P. D. Mitcheson, P. Miao, B. H. Stark, E. M. Yeatman, A. S. Holmes & T. C. Green, “MEMS electrostatic micropower generator for low frequency operation.” Sensors and Actuators A: Physical, 115(2-3), 523-529, 2004.
    [16] J. H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S. W. Kim, & J. H. Kim, “All-in-one energy harvesting and storage devices.” Journal of Materials Chemistry A, 4(21), 7983-7999, 2016.
    [17] K. H. Ke & C. K. Chung, “High‐performance Al/PDMS TENG with novel complex morphology of two‐height microneedles array for high‐sensitivity force‐sensor and self‐powered application.” Small, 16(35), 2001209, 2020.
    [18] D. Heo, J. Chung, B. Kim, H. Yong, G. Shin, J. W. Cho. & S. Lee, “Triboelectric speed bump as a self-powered automobile warning and velocity sensor.” Nano Energy, 72, 104719, 2020.
    [19] M. Xu, P. Wang, Y. C. Wang, S. L. Zhang, A. C. Wang, C. Zhang & Z. L. Wang, “A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self‐powered vibration sensing.” Advanced Energy Materials, 8(9), 1702432, 2018.
    [20] Y. Yang, Z. H. Lin, T. Hou, F. Zhang & Z. L. Wang, “Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors.” Nano Research, 5, 888-895, 2012.
    [21] W. H. Huang, Y. J. Lin & H. F. Lee, “Impact of population and workforce aging on economic growth: case study of Taiwan.” Sustainability, 11(22), 6301, 2019.
    [22] National Development Council, “Population projections for the Republic of China (Taiwan): 2018-2065.”, 2018.
    [23] Y. Y. Lin & C. S. Huang, “Aging in Taiwan: building a society for active aging and aging in place.” The Gerontologist, 56(2), 176-183, 2016.
    [24] http://research.ord.ntu.edu.tw/landscape/inner.aspx?id=260&chk=4dd6e804-41d7-420d-a4a2-beacba644b44
    [25] C. K. Chung, Y. C. Lin, & G. R. Huang, “Bulge formation and improvement of the polymer in CO2 laser micromachining.” Journal of Micromechanics and Microengineering, 15(10), 1878, 2005.
    [26] C. K. Chung & S. L. Lin, “On the fabrication of minimizing bulges and reducing the feature dimensions of microchannels using novel CO2 laser micromachining.” Journal of Micromechanics and Microengineering, 21(6), 065023, 2011.
    [27] C. K. Chung & K. H. Ke, “High contact surface area enhanced Al/PDMS triboelectric nanogenerator using novel overlapped microneedle arrays and its application to lighting and self-powered devices.” Applied Surface Science, 508, 145310, 2020.
    [28] J. Kim, O. Gulahmadov & M. B. Muradov, “Enhancement of performance of triboelectric generators by introduction of micro-and nano-structures on triboelectric films.” Journal of Materials Science: Materials in Electronics, 32(20), 24661-24680, 2021.
    [29] Y. S. Choi, S. W. Kim & S. Kar-Narayan, “Materials-related strategies for highly efficient triboelectric energy generators.” Advanced Energy Materials, 11(7), 2003802, 2021.
    [30] F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang & Z. L. Wang, “Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films.” Nano letters, 12(6), 3109-3114, 2012.
    [31] G. G. Cheng, S. Y. Jiang, K. Li, Z. Q. Zhang, Y. Wang, N. Y. Yuan & W. Zhang, “Effect of argon plasma treatment on the output performance of triboelectric nanogenerator.” Applied Surface Science, 412, 350-356, 2017.
    [32] X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang & Z. L. Wang, “Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy.” Energy & Environmental Science, 13(1), 277-285, 2020.
    [33] W. Choi, I. Yun, J. Jeung, Y. S. Park, S. Cho, D. W. Kim, I. S. Kang, Y. Chung & U. Jeong, “Stretchable triboelectric multimodal tactile interface simultaneously recognizing various dynamic body motions.” Nano Energy, 56, 347-356, 2019.
    [34] Y. Zhou, M. Shen, X. Cui, Y. Shao, L. Li & Y. Zhang, “Triboelectric nanogenerator based self-powered sensor for artificial intelligence.” Nano Energy, 84, 105887, 2021.
    [35] X. Cao, Y. Xiong, J. Sun, X. Zhu, Q. Sun & Z. L. Wang, “Piezoelectric Nanogenerators Derived Self-Powered Sensors for Multifunctional Applications and Artificial Intelligence.” Advanced Functional Materials, 31(33), 2102983, 2021.
    [36] https://www.who.int/publications/i/item/9789241563536
    [37] Z. L. Wang & J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays.” Science, 312(5771), 242-246, 2006.
    [38] S. P. Beeby, M. J. Tudor & N. M. White, “Energy harvesting vibration sources for microsystems applications.” Measurement science and technology, 17(12), R175, 2006.
    [39] F. R. Fan, Z. Q. Tian & Z. L. Wang, “Flexible triboelectric generator.” Nano energy, 1(2), 328-334, 2012.
    [40] B. A. Grzybowski, M. Fialkowski & J. A. Wiles, “Kinetics of contact electrification between metals and polymers.” The Journal of Physical Chemistry B, 109(43), 20511-20515, 2005.
    [41] J. Lowell, A. C. Rose-Innes, “Contact electrification.” Advances in Physics, 29(6), 947-1023, 1980.
    [42] S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu & Z. L. Wang, “Theoretical study of contact-mode triboelectric nanogenerators as an effective power source.” Energy & Environmental Science, 6(12), 3576-3583, 2013.
    [43] H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. Wang, C. Xu & Z. L. Wang, “Quantifying the triboelectric series.” Nature communications, 10(1), 1427, 2019.
    [44] Z. L. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.” ACS nano, 7(11), 9533-9557, 2015.
    [45] Y. Li, J. Yu, Y. Wei, Y. Wang, Z. Feng, L. Cheng & Q. Sun, “Recent progress in self-powered wireless sensors and systems based on TENG.” Sensors, 23(3), 1329, 2023.
    [46] Z. L. Wang, “Triboelectric nanogenerators as new energy technology and self-powered sensors - Principles, problems and perspectives.” ACS nano, 7(11), 9533-9557, 2014.
    [47] R. K. Cheedarala & J. I. Song, “Sand-polished Kapton film and aluminum as source of electron transfer triboelectric nanogenerator through vertical contact separation mode.” International Journal of Smart and Nano Materials, 11(1), 38-46, 2020.
    [48] J. Wang, S. Qian, J. Yu, Q. Zhang, Z. Yuan, S. Sang, X. Zhou & L. Sun, “Flexible and Wearable PDMS-Based Triboelectric Nanogenerator for Self-Powered Tactile Sensing.” Nanomaterials, 9(9), 1304, 2019.
    [49] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu & Z. L. Wang, “Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism.” Nano letters, 13(5), 2226-2233, 2013.
    [50] Y. Yang, H. Zhang, J. Chen, Q. Jing, Y. S. Zhou, X. Wen & Z. L. Wang, “Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system.” Acs Nano, 7(8), 7342-7351, 2013.
    [51] S. A. Khan, A. Ali, A. Q. Rahimoon & P. Jalalzai, “Harvesting energy of body motion through single electrode based self-powered triboelectric nanogenerator.” Journal of Nanoelectronics and Optoelectronics, 14(11), 1572-1581, 2019.
    [52] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan & Z. L. Wang, “Recent progress in electronic skin.” Advanced Science, 2(10), 1500169, 2015.
    [53] Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu & Z. L. Wang, “Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system.” ACS nano, 7(10), 9213-9222, 2013.
    [54] S. Wang, Y. Xie, S. Niu, L. Lin and Z. L. Wang, “Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes.” Advanced materials, 26(18), 2818-2824, 2014.
    [55] Q. Tang, X. Pu, Q. Zeng, H. Yang, J. Li, Y. Wu & C. Hu, “A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator.” Nano Energy, 66, 104087, 2019.
    [56] Z. Wen, Y. Yang, N. Sun, G. Li, Y. Liu, C. Chen & X. Sun, “A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors.” Advanced Functional Materials, 28(37), 1803684, 2018.
    [57] H. Yang, M. Wang, M. Deng, H. Guo, W. Zhang, H. Yang & Z. L. Wang, “A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems.” Nano Energy, 56, 300-306, 2019.
    [58] V. L. Trinh & C. K. Chung, “A Facile Method and Novel Mechanism Using Microneedle‐Structured PDMS for Triboelectric Generator Applications.” Small, 13(29), 1700373, 2017.
    [59] J. Song, L. Gao, X. Tao & L. Li, “Ultra-flexible and large-area textile-based triboelectric nanogenerators with a sandpaper-induced surface microstructure.” Materials, 11(11), 2120, 2018.
    [60] C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park & K. J. Lee, “Topographically-designed triboelectric nanogenerator via block copolymer self-assembly.” Nano letters, 14(12), 7031-7038, 2014.
    [61] V. L. Trinh & C. K. Chung, “Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure.” Applied Energy, 213, 353-365, 2018.
    [62] Y. H. Ko, G. Nagaraju, S. H. Lee & J. S. Yu, “PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays.” ACS applied materials & interfaces, 6(9), 6631-6637, 2014.
    [63] M. Mariello, E. Scarpa, L. Algieri, F. Guido, V. M. Mastronardi, A. Qualtieri & M. De Vittorio, “Novel flexible triboelectric nanogenerator based on metallized porous PDMS and parylene C.” Energies, 13(7), 1625, 2020.
    [64] C. Wu, A. C. Wang, W. Ding, H. Guo & Z. L. Wang, “Triboelectric nanogenerator: a foundation of the energy for the new era.” Advanced Energy Materials, 9(1), 1802906, 2019.
    [65] C. X. Lu, C. B. Han, G. Q. Gu, J. Chen, Z. W. Yang, T. Jiang & Z. L. Wang, "Temperature effect on performance of triboelectric nanogenerator.” Advanced Engineering Materials, 19(12), 1700275, 2017.
    [66] V. Nguyen & R. Yang, “Effect of humidity and pressure on the triboelectric nanogenerator.” Nano Energy, 2(5), 604-608, 2013.
    [67] Z. L. Wang, “Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives.” Faraday discussions, 176, 447-458, 2014.
    [68] Q. M. Saqib, R. A. Shaukat, M. U. Khan, M. Chougale & J. Bae, “Biowaste peanut shell powder-based triboelectric nanogenerator for biomechanical energy scavenging and sustainably powering electronic supplies.” ACS Applied Electronic Materials, 2(12), 3953-3963, 2020.
    [69] L. Xu, W. Xuan, J. Chen, C. Zhang, Y. Tang, X. Huang, W. Li, H. Jin, S. Dong, W. Yin, Y. Fu & J. Luo, “Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator.” Nano Energy, 83, 105814, 2021.
    [70] S. Hao, J. Jiao, Y. Chen, Z. L. Wang & X. Cao, “Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors.” Nano Energy, 104957, 2020.
    [71] J. Luo, F. R. Fan, T. Zhou, W. Tang, F. Xue & Z. L. Wang, “Ultrasensitive self-powered pressure sensing system.” Extreme Mechanics Letters, 2, 28-36, 2015.
    [72] J. Yu, X. Hou, M. Cui, S. Shi, J. He, Y. Sun, C. Wang, & X. Chou, “Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring.” Science China Materials, 62(10), 1423-1432, 2019.
    [73] P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang & Z. L. Wang, “Membrane‐based self‐powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring.” Advanced Functional Materials, 24(37), 5807-5813, 2014.
    [74] H. Lei, Y. Chen, Z. Gao, Z. Wen & X. Sun, “Advances in self-powered triboelectric pressure sensors.” Journal of Materials Chemistry A, 9(36), 20100-20130, 2021.
    [75] Y. Wu, Y. Luo, J. Qu, W. A. Daoud & T. Qi, “Nanogap and environmentally stable triboelectric nanogenerators based on surface self-modified sustainable films.” ACS Applied Materials & Interfaces, 12(49), 55444-55452, 2020.
    [76] M. Ha, S. Lim, S. Cho, Y. Lee, S. Na, C. Baig & H. Ko, “Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors.” ACS nano, 12(4), 3964-3974, 2018.
    [77] M. S. Rasel, P. Maharjan, M. Salauddin, M. T. Rahman, H. O. Cho, J. W. Kim & J. Y. Park, “An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications.” Nano Energy, 49, 603-613, 2018.
    [78] J. Rao, Z. Chen, D. Zhao, R. Ma, W. Yi, C. Zhang, D. Liu, X. Chen, Y. Yang, X. F. Wang, J. Yin, X. Wang, G. Yang & F. Yi, “Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator.” Nano Energy, 75, 105073, 2020.
    [79] W. J. Li, Y. Y. Liu, S. W. Wang, W. Li, G. X. Liu, J. Q. Zhao, X. H. Zhang & C. Zhang, “Vibrational triboelectric nanogenerator-based multinode self-powered sensor network for machine fault detection.” Ieee/Asme Transactions on Mechatronics, 25(5), 2188-2196, 2020.
    [80] W. Q. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. J. Su, Q. S. Jing, X. Cao & Z. L. Wang, “Harvesting energy from the natural vibration of human walking.” ACS nano, 7(12), 11317-11324, 2013.
    [81] J. Y. Park, M. Salauddin & M. S. Rasel, “Nanogenerator for scavenging low frequency vibrations.” Journal of Micromechanics and Microengineering, 29(5), 053001, 2019.
    [82] T. Zhou, C. Zhang, C. B. Han, F. R. Fan, W. Tang & Z. L. Wang, “Woven structured triboelectric nanogenerator for wearable devices.” ACS applied materials & interfaces, 6(16), 14695-14701, 2014.
    [83] H. Zhang, P. Zhang & W. Zhang, “A high-output performance mortise and tenon structure triboelectric nanogenerator for human motion sensing.” Nano Energy, 84, 105933, 2021.
    [84] Y. Zeng, H. Xiang, N. Zheng, X. Cao, N. Wang & Z. L. Wang, “Flexible triboelectric nanogenerator for human motion tracking and gesture recognition.” Nano Energy, 91, 106601, 2022.
    [85] Q. Zhang, Y. Jin, J. G. Cai, L. Xu, T. Y. Y. He, T. H. Wang, Y. J. Tian, L. Li, Y. Peng & C. K. Le, “Wearable triboelectric sensors enabled gait analysis and waist motion capture for IoT‐based smart healthcare applications.” Advanced Science, 9(4), 2103694, 2022.
    [86] T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V. Y. Thean & C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space.” Nano Energy, 58, 641-651, 2019.
    [87] D. Doganay, M. O. Cicek, M. B. Durukan, B. Altuntas, E. Agbahca, S. Coskun & H. E. Unalan, “Fabric based wearable triboelectric nanogenerators for human machine interface.” Nano Energy, 89, 106412, 2021.
    [88] B. Zhang, Y. Tang, R. Dai, H. Wang, X. Sun, C. Qin, Z. Pan, E. Liang & Y. Mao, “Breath-based human–machine interaction system using triboelectric nanogenerator.” Nano Energy, 64, 103953, 2019.
    [89] J. Yun, N. Jayababu & D. Kim, “Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence.” Nano Energy, 78, 105325, 2020.
    [90] U. Ali, K. J. B. A. Karim & N. A. Buang, “A review of the properties and applications of poly (methyl methacrylate)(PMMA).” Polymer Reviews, 55(4), 678-705, 2015.
    [91] M. P. Wolf, G. B. Salieb-Beugelaar & P. Hunziker, “PDMS with designer functionalities-Properties, modifications strategies, and applications.” Progress in Polymer Science, 83, 97-134, 2018.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE