簡易檢索 / 詳目顯示

研究生: 丁芳祺
Ding, Fang-Chi
論文名稱: 優化銅鍍膜的濺鍍條件與鍍膜除去用於化學氣相沈積法合成免轉置石墨烯
Optimizing the Deposition and Removal Process of Catalytic Metal Films for the Chemical Vapor Deposition Synthesis of Transfer-Free Graphene
指導教授: 陳巧貞
Chen, Chiao-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 107
中文關鍵詞: 免轉置石墨烯蝕刻圖案化微流道
外文關鍵詞: Transfer-free graphene, Chemical vapor deposition, Microfluidic etching
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技日夜蓬勃,半導體尺寸越做越小,但以現今以矽晶圓為主的電子科技,以達到尺寸極限,因此需要尋找其他材料取代矽晶圓,由於石墨烯擁有獨特物理特性,高電子遷移率與高導電性且材料極薄,使石墨烯被譽為是未來可以取代矽晶圓的超新型材料;為了提昇石墨烯與半導體產業的製程相容性,必須優化石墨烯的製備流程,若能直接於半導體常用的絕緣基板(如:矽晶片與石英基板)上直接合成高品質、低缺陷且具特定尺寸與幾何形狀的石墨烯圖案(grapphene pattern),將可免除石墨烯材料合成後,應用於半導體元件製程中所需繁複的後端製程,如:石墨烯的轉置步驟(graphene transfer process)與圖案化石墨烯薄膜常用的黃光製程(photolithography procedure)。如此以來,石墨烯合成與半導體製程的整合流程將可能大幅簡化,有利於進一步提昇石墨烯元件的量產與應用。合成石墨烯的方式多種,目前以化學氣相沉積法(chemical vapor deposition method)在過渡金屬催化下合成的石墨烯較廣泛地應用在半導體產業上,但仍有許多問題需要克服,其中一項為:使用所合成之石墨烯製作元件時,必須先移除金屬催化基板。移除金屬所使用的蝕刻過程,常使石墨烯破損,導致所得之石墨烯薄膜品質下降,因此改良蝕刻方式為重要議題。
    本次研究探討了催化金屬的鍍膜參數對於石墨烯成長率的影響,以確保能夠合成高品質、低缺陷的石墨烯,其次探討基板之親疏水性對於石墨烯在蝕刻過程中留存於基板完整度的影響,最後利用微流體概念開發微流道蝕刻法,使蝕刻液以層流的方式進行蝕刻,成功製備出覆蓋1*1平方公分矽基板,完整且無破損之免轉置石墨烯,並且應用於製備直接成長之圖案化石墨烯,所開發之新型蝕刻方式,相較過去傳統蝕刻法,蝕刻過程簡單且蝕刻液用量低,使製程更為環保。

    Graphene has been considered as a promising material to replace silicon in semiconductor industry due to its superior properties, including high carrier mobility, outstanding thermal conductivity, and unique optical properties. In general, the preparation of graphene by chemical vapor deposition (CVD) method involves a laborious process to transfer graphene from catalytic metal substrate onto dielectric materials for advanced applications. However, conventional transfer processes have been reported to inevitably introduce contaminations, wrinkles, and cracks on the as-synthesized graphene, resulting in degradation in graphene quality. Transfer-free synthesis of graphene, which eliminates the transfer process in the preparation procedure, provides a possible way to circumvent the aforementioned problems and to facilitate the integration between graphene synthesis and the fabrication of microelectromechanical systems (MEMS). Herein, we purposed a method to directly grow graphene on a dielectric substrate via CVD method by using a deposited Cu thin film on the silica substrate. With the optimal synthesis protocol, sublimation and dewetting of metal thin film commonly encountered in low-pressure CVD systems were effectively suppressed. Therefore, the integrity of the catalytic metal film throughout the synthesis process can be maintained, leading to significant improvement in the control of layer numbers and the uniformity of synthesized graphene. In addition, the effects of the sputtering parameters on the preparation of catalytic metal films and the hydrophilicity of the Si substrate were examined to reveal critical factors that determine the integrity of produced transfer-free graphene on the substrate during the etching process. Finally, the microfluidic concept was applied to develop a microfluidic etching method to remove the Cu film under a laminar flow, ensuring to obtain integral transfer-free graphene on 1×1 cm² silicon substrate without detachment and cracks. The etching method reported here involves an unsophisticated process and consumes significantly lower amount of etching solution, making this process more competitive than conventional etching process.

    摘要 I Extanted Abstract II 謝誌 XII 目錄 XIII 圖目錄 XVII 表目錄 XXII 第一章 緒論與研究動機 1 1.1 緒論 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1石墨烯簡介 3 2.1.1 基本性質 3 2.1.2 發展背景 4 2.2石墨烯的結構與特性 5 2.2.1晶格結構 5 2.2.2能帶結構 6 2.3 石墨烯製備方法 7 2.3.1 機械剝離法 7 2.3.2 碳化矽磊晶法 8 2.3.3氧化石墨(烯)還原法 9 2.3.4 液相剝離法 10 2.4 化學氣相沉積製備石墨烯 11 2.4.1石墨稀成長於過渡金屬上 15 2.5 石墨烯轉置方式 17 2.5.1聚合物支撐轉置法 17 2.5.2無聚合物轉置法 19 2.5.3免轉置法 23 2.6 微流道之簡介 26 2.6.1 微流道的製作 26 2.7.2微流道與層流原理 28 2.7 接觸角之測量 31 2.7.1接觸角與物理因子關係 31 2.7.2 接觸角之測量方式 33 第三章 實驗方法與材料 34 3.1 實驗流程設計 34 3.2濺鍍銅膜於矽基板實驗步驟 35 3.2.1光罩設計 35 3.2.2 光阻曝光 36 3.2.3 濺鍍金屬基材 37 3.2.4 舉離光阻 37 3.3化學氣相沉積製備免轉置石墨烯法 38 3.3.1 銅鍍膜基板處理 38 3.3.2 化學氣相沉積系統架構 38 3.4 免轉置石墨烯蝕刻方法 40 3.4.1 傳統浸泡蝕刻方式 40 3.4.2微流道蝕刻方式 41 3.5聚合物支撐法 43 3.6檢測儀器 45 3.6.1光學顯微鏡(Optical microscopy, OM) 45 3.6.2 掃描式電子顯微鏡(Sanning electron microscopy, SEM) 45 3.6.3 能量色散X射線儀(Energy-dispersive X-ray spectroscopy, EDS) 45 3.6.4 X射線繞射儀 (X-ray diffraction, XRD) 46 3.6.5紫外-可見分光光度法(Ultraviolet-visible spectroscopy, UV-vis) 47 3.6.4 原子力顯微鏡(Atomic force microscopes, AFM) 47 3.6.5接觸角測量儀 48 3.6.6 Comsol模擬建立 48 3.6.7 拉曼顯微鏡 49 第四章 結果與討論 50 4.1 反應腔體總壓對於銅膜揮發性之影響 50 4.2 不同濺鍍腔體壓力之銅鍍膜對於免轉置石墨烯之影響 54 4.2.1 不同濺鍍腔體壓力之銅鍍膜厚度分析。 54 4.2.2 不同濺鍍腔體壓力對於銅鍍膜的影響 55 4.2.3 不同濺鍍腔體壓力之銅鍍膜對於石墨烯合成影響 58 4.3 不同鍍率之銅鍍膜對於免轉置石墨烯之影響 61 4.3.1 不同濺鍍鍍率製備的銅鍍膜之厚度分析 61 4.3.2 不同鍍率對於銅鍍膜的影響 62 4.3.3 不同鍍率之銅鍍膜對於石墨烯影響 64 4.4 不同矽基板清潔方式處理之影響 67 4.4.1不同矽基板清潔方式處理之親疏水性差異性比較 67 4.4.2 不同矽基板之清潔方式對於銅鍍膜的影響 72 4.5 微流道實驗之設計 78 4.5.1 微流道的層流系統模擬 79 4.5.2 不同流量之蝕刻時間與清洗時間之探討 81 4.5.3 不同厚度的銅鍍膜之蝕刻時間與清洗時間之探討 87 4.7 不同蝕刻方式對於不同清潔矽基板之方法的影響 89 4.7.1三種不同清潔方式之矽基板進行傳統蝕刻之差異性比較 89 4.7.2三種不同清潔方式之矽基板進行聚合物支撐法轉置之差異性比較 92 4.7.3 三種蝕刻方是對於不同親疏水性之基板的蝕刻影響 95 4.8 圖案化石墨烯之製程 97 4.8.1 簡單圖案化石墨烯之製程 97 4.8.2 國立成功大學之校徽之圖化石墨烯的製程 98 第五章 結論與未來展望 101 第六章 參考文獻 102

    1. Kharissova, O. V.; Kharisov, B. I.; Oliva González, C. M., Carbon–Carbon allotropic Hybrids and Composites: Synthesis, Properties, And Applications. Industrial & Engineering Chemistry Research 2019, 58, 3921-3948.
    2. Kohlschütter, V.; Haenni, P., Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure. Zeitschrift für anorganische und allgemeine Chemie 1919, 105, 121-144.
    3. Bernal, J. D.; Bragg, W. L., The Structure of Graphite. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1924, 106, 749-773.
    4. DiVincenzo, D. P.; Mele, E. J., Self-Consistent Effective-Mass Theory for Intralayer Screening in Graphite Intercalation Compounds. Physical Review B 1984, 29, 1685-1694.
    5. Ruess, G.; Vogt, F., Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 1948, 78, 222-242.
    6. Pauling, L., Ulta-Thin Epitaxial Films of Raphite and Hexagonal Boron Nitride on Solid Surfaces. Jouranl of Physics : Condensed Matter 1960.
    7. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666.
    8. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438 (7065), 197-200.
    9. Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T., Properties of Graphene: a Theoretical Perspective. Advances in Physics 2010, 59, 261-482.
    10. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The Electronic Properties of Graphene. Reviews of Modern Physics 2009, 81, 109-162.
    11. .Novoselov, K. S.; Castro Neto, A. H., Two-Dimensional Crystals-Based Heterostructures: Materials With Tailored Poperties. Physica Scripta 2012, T146, 014006.
    12. First, P. N.; de Heer, W. A.; Seyller, T.; Berger, C.; Stroscio, J. A.; Moon, J.-S., Epitaxial Graphenes on Silicon Carbide. MRS Bulletin 2010, 35, 296-305.
    13. Camara, N.; Rius, G.; Huntzinger, J. R.; Tiberj, A.; Mestres, N.; Godignon, P.; Camassel, J., Selective Epitaxial Growth of Graphene on SiC. Applied Physics Letters 2008, 93 , 123503.
    14. Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A Roadmap for Graphene. Nature 2012, 490, 192-200.
    15. Singh, J.; Rathi, A.; Rawat, M.; Gupta, M., Graphene: From Synthesis to Engineering to Biosensor Applications. Frontiers of Materials Science 2018, 12, 1-20.
    16. Rowley-Neale, S. J.; Randviir, E. P.; Abo Dena, A. S.; Banks, C. E., An Overview of Recent Applications of Reduced Graphene Oxide as a Basis of Electroanalytical Sensing Platforms. Applied Materials Today 2018, 10, 218-226.
    17. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806-4814.
    18. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80, 1339-1339.
    19. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-Throughput Solution Processing of Large-Scale Graphene. Nature Nanotechnology 2009, 4, 25-29.
    20. Cui, X.; Zhang, C.; Hao, R.; Hou, Y., Liquid-Phase Exfoliation, Functionalization and Applications of Graphene. Nanoscale 2011, 3, 2118-2126.
    21. Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Letters 2010, 10, 4128-4133.
    22. Lin, L.; Deng, B.; Sun, J.; Peng, H.; Liu, Z., Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chemical Reviews 2018, 118, 9281-9343.
    23. Hsu, C. J.; Nayak Pk Fau - Wang, S.-C.; Wang Sc Fau - Sung, J. C.; Sung Jc Fau - Wang, C.-L.; Wang Cl Fau - Wu, C.-L.; Wu Cl Fau - Huang, J.-L.; Huang, J. L., Spinodal Decomposition of Mono- to Few-Layer Graphene on Ni Substrates at Low Temperature. (1533-4880 (Print)).
    24. Kaur, G.; Kavitha, K.; Lahiri, I., Transfer-Free Graphene Growth on Dielectric Substrates: A Review of the Growth Mechanism. Critical Reviews in Solid State and Materials Sciences 2019, 44, 157-209.
    25. Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S., Synthesis of Graphene and Its Applications: A Review. Critical Reviews in Solid State and Materials Sciences 2010, 35 , 52-71.
    26. Randviir, E. P.; Brownson, D. A. C.; Banks, C. E., A Decade of Graphene Research: Production, Applications and Outlook. Materials Today 2014, 17 (9), 426-432.
    27. Karu, A. E.; Beer, M., Pyrolytic Formation of Highly Crystalline Graphite Films. Journal of Applied Physics 1966, 37, 2179-2181.
    28. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457 (7230), 706-710.
    29. Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z., Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals. Nano Letters 2011, 11 , 297-303.
    30. Iwasaki, T.; Park, H. J.; Konuma, M.; Lee, D. S.; Smet, J. H.; Starke, U., Long-Range Ordered Single-Crystal Graphene on High-Quality Heteroepitaxial Ni Thin Films Grown on MgO(111). Nano Letters 2011, 11 , 79-84.
    31. Liu, W.; Kraemer, S.; Sarkar, D.; Li, H.; Ajayan, P. M.; Banerjee, K., Controllable and Rapid Synthesis of High-Quality and Large-Area Bernal Stacked Bilayer Graphene Using Chemical Vapor Deposition. Chemistry of Materials 2014, 26, 907-915.
    32. Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S., Graphene Segregated on Ni Surfaces and Transferred to Insulators. Applied Physics Letters 2008, 93 , 113103.
    33. Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters 2009, 9 , 4268-4272.
    34. Mattevi, C.; Kim, H.; Chhowalla, M., A Review of Chemical Vapour Deposition of Graphene on Copper. Journal of Materials Chemistry 2011, 21, 3324-3334.
    35. Lin, L.; Liu, Z., On-The-Spot Growth. Nature Materials 2016, 15 , 9-10.
    36. Zhang, Y.; Zhang, L.; Zhou, C., Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research 2013, 46, 2329-2339.
    37. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters 2009, 9, 30-35.
    38. 38. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters 2009, 9, 4359-4363.
    39. 39. Lin, W.-H.; Chen, T.-H.; Chang, J.-K.; Taur, J.-I.; Lo, Y.-Y.; Lee, W.-L.; Chang, C.-S.; Su, W.-B.; Wu, C.-I., A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate. ACS Nano 2014, 8, 1784-1791.
    40. Zhang, G.; Güell, A. G.; Kirkman, P. M.; Lazenby, R. A.; Miller, T. S.; Unwin, P. R., Versatile Polymer-Free Graphene Transfer Method and Applications. ACS Applied Materials & Interfaces 2016, 8, 8008-8016.
    41. Belyaeva, L. A.; Fu, W.; Arjmandi-Tash, H.; Schneider, G. F., Molecular Caging of Graphene with Cyclohexane: Transfer and Electrical Transport. ACS Central Science 2016, 2, 904-909.
    42. Yong, K.; Ashraf, A.; Kang, P.; Nam, S., Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices. Scientific Reports 2016, 6, 24890.
    43. Lima, L. M. C.; Arjmandi-Tash, H.; Schneider, G. F., Lateral Non-covalent Clamping of Graphene at the Edges Using a Lipid Scaffold. ACS Applied Materials & Interfaces 2018, 10 , 11328-11332.
    44. 44. Zhang, L.; Shi, Z.; Wang, Y.; Yang, R.; Shi, D.; Zhang, G., Catalyst-Free Growth of Nanographene Films on Various Substrates. Nano Research 2011, 4, 315-321.
    45. 45. Wang, H.; Xue, X.; Jiang, Q.; Wang, Y.; Geng, D.; Cai, L.; Wang, L.; Xu, Z.; Yu, G., Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate. Journal of the American Chemical Society 2019, 141 , 11004-11008.
    46. 46. Teng, P.-Y.; Lu, C.-C.; Akiyama-Hasegawa, K.; Lin, Y.-C.; Yeh, C.-H.; Suenaga, K.; Chiu, P.-W., Remote Catalyzation for Direct Formation of Graphene Layers on Oxides. Nano Letters 2012, 12, 1379-1384.
    47. 47. Song, I. A.-O.; Park, Y.; Cho, H.; Choi, H. A.-O., Transfer-Free, Large-Scale Growth of High-Quality Graphene on Insulating Substrate by Physical Contact of Copper Foil. (1521-3773 (Electronic)).
    48. 48. Chen, J.; Wen, Y.; Guo, Y.; Wu, B.; Huang, L.; Xue, Y.; Geng, D.; Wang, D.; Yu, G.; Liu, Y., Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates. Journal of the American Chemical Society 2011, 133, 17548-17551.
    49. Su, C.-Y.; Lu, A.-Y.; Wu, C.-Y.; Li, Y.-T.; Liu, K.-K.; Zhang, W.; Lin, S.-Y.; Juang, Z.-Y.; Zhong, Y.-L.; Chen, F.-R.; Li, L.-J., Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters 2011, 11, 3612-3616.
    50. 50. Wu, Z.; Guo, Y.; Guo, Y.; Huang, R.; Xu, S.; Song, J.; Lu, H.; Lin, Z.; Han, Y.; Li, H.; Han, T.; Lin, J.; Wu, Y.; Long, G.; Cai, Y.; Cheng, C.; Su, D.; Robertson, J.; Wang, N., A Fast Transfer-Free Synthesis of High-Quality Monolayer Graphene on Insulating Substrates by A Simple Rapid Thermal Treatment. Nanoscale 2016, 8 , 2594-2600.
    51. Yuchun, C.; Minjui, L.; Chihchun, C.; Pinyi, L.; Chenglung, C.; Yonhua, T. In Chemical vapor deposition of transfer-free graphene on SiO2/Si using a sacrificial copper film, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 27-30 July 2015; 2015; pp 556-559.
    52. Lee, D.; Ahn, G.; Ryu, S., Two-Dimensional Water Diffusion at a Graphene–Silica Interface. Journal of the American Chemical Society 2014, 136, 6634-6642.
    53. 53. Whitesides, G. M., The Origins and The Future of Microfluidics. Nature 2006, 442, 368-373.
    54. Reyes, D. R.; Iossifidis, D.; Auroux, P.-A.; Manz, A., Micro Total Analysis Systems. 1. Introduction, Theory, and Technology. Analytical Chemistry 2002, 74, 2623-2636.
    55. Lin, C.-H.; Lee, G.-B.; Lin, Y.-H.; Chang, G.-L., A Fast Prototyping Process for Fabrication of Microfluidic Systems on Soda-Lime Glass. Journal of Micromechanics and Microengineering 2001, 11, 726-732.
    56. 56. Sollier, E.; Murray, C.; Maoddi, P.; Di Carlo, D., Rapid Prototyping Polymers for Microfluidic Devices and High Pressure Injections. Lab on a Chip 2011, 11, 3752-3765.
    57. McDonald, J. C.; Whitesides, G. M., Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Accounts of Chemical Research 2002, 35, 491-499.
    58. Pohar, A.; Plazl, I., Laminar to Turbulent Transition and Heat Transfer in a Microreactor: Mathematical Modeling and Experiments. Industrial & Engineering Chemistry Research 2008, 47, 7447-7455.
    59. 59. Ismagilov, R. F.; Rosmarin, D.; Kenis, P. J. A.; Chiu, D. T.; Zhang, W.; Stone, H. A.; Whitesides, G. M., Pressure-Driven Laminar Flow in Tangential Microchannels:  an Elastomeric Microfluidic Switch. Analytical Chemistry 2001, 73, 4682-4687.
    60. Eckert, M., The Troublesome Birth of Hydrodynamic Stability Theory:Sommerfeld and The Turbulence Problem. The European Physical Journal H 2010, 35, 29-51.
    61. Eames, I.; Flor, J. B., New Developments in Understanding Interfacial Processes in Turbulent Flows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011, 369 (1937), 702-705.
    62. Falkovich, G.; Sreenivasan, K. R., Lessons From Hydrodynamic Turbulence. Physics Today 2006, 59, 43-49.
    63. 63. Avila, K.; Moxey, D.; de Lozar, A.; Avila, M.; Barkley, D.; Hof, B., The Onset of Turbulence in Pipe Flow. Science 2011, 333, 192.
    64. Zohuri, B., Laminar Incompressible Forced Convection. In Thermal-Hydraulic Analysis of Nuclear Reactors, Zohuri, B., Ed. Springer International Publishing: Cham, 2017; pp 147-221.
    65. de Gennes, P. G., Wetting: Statics and Dynamics. Reviews of Modern Physics 1985, 57, 827-863.
    66. Kern, K.; David, R.; Palmer, R. L.; Comsa, G., Complete Wetting on ``Strong' Substrates: Xe/Pt(111). Physical Review Letters 1986, 56, 2823-2826.
    67. 67. Hebbar, R. S.; Isloor, A. M.; Ismail, A. F., Chapter 12 - Contact Angle Measurements. In Membrane Characterization, Hilal, N.; Ismail, A. F.; Matsuura, T.; Oatley-Radcliffe, D., Eds. Elsevier: 2017; pp 219-255.
    68. Wang, Y. y.; Ni, Z. h.; Yu, T.; Shen, Z. X.; Wang, H. m.; Wu, Y. h.; Chen, W.; Shen Wee, A. T., Raman Studies of Monolayer Graphene: The Substrate Effect. J. Phys. Chem. C 2008, 112, 10637-10640.
    69. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51-87.
    70. Thornton, J. A., Influence of Apparatus Geometry and Deposition Conditions on The Structure and Topography of Thick Sputtered Coatings. Journal of Vacuum Science and Technology 1974, 11, 666-670.
    71. 71. Chan, K.-Y.; Teo, B.-S., Sputtering Power and Deposition Pressure Effects on The Electrical and Structural Properties of Copper Thin Films. Journal of Materials Science 2005, 40, 5971-5981.
    72. Ohtsuka, M.; Takeuchi, H.; Fukuyama, H., Effect of Sputtering Pressure on Crystalline Quality and Residual Stress of AlN Films Deposited at 823 K on Nitrided Sapphire Substrates by Pulsed DC Reactive Sputtering. Japanese Journal of Applied Physics 2016, 55 (5S), 05FD08.
    73. 73. Srinivas, K.; Manivel Raja, M.; Sridhara Rao, D. V.; Kamat, S. V., Effect of Sputtering Pressure and Power on Composition, Surface Roughness, Microstructure and Magnetic Properties of As-Deposited Co2FeSi Thin Films. Thin Solid Films 2014, 558, 349-355.
    74. Dalstein, L.; Potapova, E.; Tyrode, E., The Elusive Eilica/Water Interface: Isolated Silanols Under Water As Revealed by Vibrational Sum Frequency Spectroscopy. Physical Chemistry Chemical Physics 2017, 19, 10343-10349.
    75. 75. Schneemilch, M.; Quirke, N., Free Energy of Adhesion of Lipid Bilayers on Silica Surfaces. The Journal of Chemical Physics 2018, 148, 194704.
    76. 76. Raj, R.; Maroo, S. C.; Wang, E. N., Wettability of Graphene. Nano Letters 2013, 13, 1509-1515.
    77. 77. Taherian, F.; Marcon, V.; van der Vegt, N. F. A.; Leroy, F., What Is the Contact Angle of Water on Graphene? Langmuir 2013, 29, 1457-1465.
    78. Jeong, H.; Hwang, W.-T.; Song, Y.; Kim, J.-K.; Kim, Y.; Hihath, J.; Chung, S.; Lee, T., Highly Uniform Monolayer Graphene Synthesis Via a Facile Pretreatment of Copper Catalyst Substrates Using An Ammonium Persulfate Solution. RSC Advances 2019, 9, 20871-20878.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE