| 研究生: |
林岳鋒 Lin, Yue-Feng |
|---|---|
| 論文名稱: |
鎢鍍層添加碳、鈦、鉻、鋁對組織結構、磨潤性質及抗氧化性之影響 Microstructure, tribological performance and anti-oxidation properties of tungsten coatings with various alloying elements (C, Ti, Cr or Al) |
| 指導教授: |
蘇演良
Su, Yean-Liang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 非平衡磁控濺鍍 、鎢鍍層 、高溫氧化 、機械性質 、磨耗 |
| 外文關鍵詞: | Unbalanced magnetron sputtering, Tungsten coating, Oxidation, Mechanical Properties, Wear |
| 相關次數: | 點閱:119 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用封閉式非平衡磁控濺鍍系統(CFUBMS)製備鎢鍍層,並選用碳、鈦、鉻以及鋁為摻雜元素製備不同鍍層。利用輝光放電光譜儀(GDOS)及能量發散光譜儀(EDS)對鍍層進行成份分析;使用掃描式電子顯微鏡(SEM)及X光繞射光譜儀(XRD)分析鍍層成長結構與結晶特性;利用微米刮痕儀做鍍膜之附著性分析;使用奈米壓痕(Nano-indentation)試驗量測奈米硬度值;利用銷對盤(Pin-on-disc)磨耗試驗機測試其抗磨耗性及摩擦係數等性質,使用掃描式顯微鏡觀察其磨耗機構。並對鍍層做熱處理實驗,使其生成氧化膜,分析氧化後對鍍層成份、結構、機械性質及耐磨耗性之影響。最後將鍍膜被覆於碳化鎢車刀及微鑽針上,實際對鋼材進行車削及對電路板進行鑽削測試,之後利用掃描式電子顯微鏡及能譜儀觀察微鑽針與車刀的磨耗量與磨耗機構。實驗主要分為三階段:第一階段以分別改變碳、鈦、鉻及鋁元素含量,分析不同含量對鎢鍍層性質的影響;第二階段探討各鍍層在較高溫度(500℃與600℃)中,持溫一小時,對鍍層性質的影響;第三階段進行車削及鑽削印刷電路板實驗,以瞭解實際上鍍膜披覆刀具在工業上的應用。
實驗結果顯示,添加8~41 at.% 的碳元素於鎢鍍層中,碳含量41 at.% ( W-C41%)有最高的硬度值25.2 GPa 而碳含量28 at.% (W-C28%)有最佳抗磨耗性;添加5~25 at.%的鈦元素於鎢鍍層中時,鈦含量5 at.% ( W-Ti5%)有最高的硬度值23.8 GPa且具有最佳的抗磨耗性;添加10~31 at.%的鉻元素於鎢鍍層中時,鉻含量31 at.% ( W-Cr31%)有最高的硬度值19.5 GPa 且具有最佳抗磨耗性;添加15~ 45 at.%的鋁元素於鎢鍍層中,鋁含量15 at.% ( W-Al15%)有最高的硬度值15.1 GPa 且具有最佳的抗磨耗性。綜合比較不同元素添加於鎢鍍層中,發現鍍層H/E值與抗磨耗性有正相關,以W-C28%鍍層有最高H/E值(0.065)且最具抗磨耗性。W-C28%、W-Ti5%、W-Cr31%及W-Al 15%鍍層在經過500℃與600℃持溫一小時的熱處理後,W-C28% 和W-Ti5%鍍層硬度及抗磨耗性質都下降,相較之下,W-Cr31%和W-Al 15%鍍層具較佳抗氧化性。在車削及印刷電路板鑽削實驗中,將四組鍍層中最佳耐磨耗性的W-C28%、W-Ti5%、W-Cr31%及W-Al 15%鍍層披覆在刀具上進行車削及鑽削實驗。由實驗結果比較得知,披覆碳含量28 at.% (W-C28%)鍍層刀具最具抗磨耗性,與未鍍膜的刀具相比,車刀刀腹磨耗降低了59%,微鑽針刀腹磨耗量降低了49%。
A closed field unbalanced magnetron sputtering (CFUBMS) system is used to deposit tungsten coatings with various contents of carbon, titanium, chromium and aluminum (W-Cx%, W-Tix%, W-Crx% and W-Alx%) on SKH51 high-speed steel substrates. The chemical compositions of the various coatings are analyzed by energy dispersive X-ray spectrometry (EDX) and glow discharge spectrometry (GDS). In addition, the microstructures of the as-deposited coatings are examined by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The adhesion strengths of the coatings are characterized by scratch tests. The hardness and elastic modulus properties of the coatings are evaluated by nanoindentation testing. Finally, the tribological properties of the various coatings are investigated using a pin-on-disc tribometer under dry conditions. Having characterized the coatings in an as-sputtered condition, the oxidation resistance, mechanical properties and tribological properties of the coatings in a high-temperature environment are observed after oxidation testing. Finally, the practical applicability of the various coatings is examined by means of turning tests and PCB micro-drilling tests.
The experimental results show that among the as-deposited W-Cx% coatings, the W-C41% coating possesses the highest hardness (25.2 GPa). Moreover, the optimal wear resistance is obtained given a C content of 28 at.%. For the W-Tix% coatings, the W-Ti5% coating possesses both the highest hardness (23.8 GPa) and the best wear resistance. Similarly, among the W-Crx% coatings, 31 at.% Cr addition yields both the highest hardness (19.5 GPa) and the best wear resistance. Finally, for the W-Alx% coatings, the coating with 15 at.% Al yields both the highest hardness (15.1 GPa) and the best wear resistance. Overall, the results suggest that the H/E ratio of the coatings (where H is the hardness and E is the elastic modulus) is directly related to the wear resistance. For example, the W-C28% coating has the highest H/E ratio (0.065) of the various coatings and provides the best tribological performance.
Following the oxidation tests at 500°C and 600°C, respectively, the W-C28% and W-Ti5% coatings have a poor mechanical and tribological performance. Moreover, the oxidation resistance of the W-Cr31% and W-Al15% coatings is better than that of the W-C28% and W-Ti5% coatings.
The W, W-C28%, W-Ti5%, W-Cr31% and W-Al15% coatings are coated on WC-Co inserts and micro-drills and used to perform a series of turning and drilling tests. In the turning tests, the W-C28% coated insert reduces the flank wear by 59% compared with an uncoated insert. Moreover, in the PCB micro-drilling tests, the W-C28% coated micro-drill reduces the flank wear by 49% and the corner wear by 56% compared with an uncoated drill.
[1] R. Feynman, "There's Plenty of room at the bottom", a talk at the annual meeting of the American Physical Society (1959).
[2] S. Veprek and S Reiprich, "A concept for the design of novel superhard coatings", Thin Solid Films 268 (1995) pp. 64.
[3] S. Veprek and A. S. Argon, "Mechanical properties of superhard nanocomposites", Surface and Coatings Technology 146-147 (2001) pp. 175.
[4] V. Provenzano and R.L. Holtz, "Nanocomposites for high temperature applications", Materials Science and Engineering A 204 (1995) pp. 125.
[5] L. Maya, W. R. Allen, A. L. Glover and J.C. Mabon, "Gold nanocomposites", Journal of Vacuum Science and Technology B 13 (1995) pp. 361.
[6] A. I. Gusev, "Effect of the nanocrystalline state in solids", Physics- Uspekhi 41 (1998) pp. 49.
[7] T. Onishi, E. Iwamura, K. Takgi and K. Yoshikawa, "Influence of adding transition metal elements to an aluminum target on electrical resistivity and hillock resistance in sputter-deposited aluminum alloy thin films", Journal of Vacuum Science and Technology A 14 (1996) pp. 2728.
[8] F. Mazaleyrat and L.K. Varga, "Ferromagnetic nanocomposites", Journal of Magnetism and Magnetic Materials 215-216 (2000) pp. 253.
[9] B. Cantor, C.M. Allen, R. Dunin-Burkowski et al., "Applications of nanocomposites", Scripta Materialia 44 (2001) pp. 2055.
[10] R. A. Andrievski and A.M. Gleze, "Size effects in properties of nanomaterials", Scripta Materialia 44 (2001) pp. 1621.
[11] H. Gleiter, "Nanocrystalline materials", Prog. Mater. Sci. 33 (1989) pp. 223.
[12] J. Musil, "Hard and superhard nanocomposite coatings", Surface and Coatings Technology 125 (2000) pp. 322.
[13] P. Holubar, M. Jilek and M. Sima, "Present and possible future applications of superhard nanocomposite coatings", Surface and Coatings Technology 133-134 (2000) pp. 145.
[14] F. Vaz and L. Rebouta, "Superhard nanocomposite Ti-Si-N coatings", Materials Science Forum 383 (2002) pp. 143.
[15] R. A. Andrievski, "Films as nanostructured materials with characteristic mechanical properties", Materials Transactions 42 (2001) pp. 1471.
[16] K.A. Taylor: Thin Solid Films 40 (1977) pp. 201.
[17] C. Rebholz, J.M. Schneider, A. Leyland and A. Mathews: Surf. Coat. Technol. 112 (1999) pp. 85.
[18] Ph. Gouy-Pailler and Y. Pauleau: J. Vac. Sci. Technol.11 (1993) pp. 96.
[19] E. Quesnel, Y. Pauleau, P. Monge-Cadet and M. Brun: Surf. Coat. Technol. 62 (1993) pp. 474.
[20] S. Eroglu, H. Ekren and T. Baykara: Scripta Mater. 38 (1997) pp. 131.
[21] B. Trindade, M.T. Vieira and E. Bauer-Grosse: Acta Mater. 46 (1998) pp. 1731.
[22] Y. Pauleau and Ph. Gouy-Pailler: Matt. Letters 13 (1992) pp. 157.
[23] N.M.G. Parreira, N.J.M. Carvalho, F. Vaz, A. Cavaleiro: Surf. Coat. Technol. 200 (2006) pp. 6511.
[24] S. Neuville and A. Matthews: Thin Solid Films 515 (2007) pp. 6619.
[25] D.S. Rickerby and A. Matthews, Advanced Surface Coatings: a handbook of surface engineering, Glasgow, Blackie, (1991).
[26] R. Behrisch Ed., Sputtering by Particle Bombardment, Applied Physics, 47, Berlin, Springer, (1981).
[27] P.D. Toensend, and J. C. Kelly, Ion Implantation: Sputtering and Their Applications, Academic Press, (1976).
[28] S.M. Rossnagel, W.D. Sproul, K.O. Legg, editors. Sputter Deposition: Opportunities for Innovation in Advanced Surface Engineering. Switzerland, Technomic Publishing Co. (1995).
[29] Nieman, J.R. Weertman, R.W. Siegel, "Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation", Scr. Met. 23 (1989) pp. 2013.
[30] G.W. Nieman, J.R. Weertman, R.W. Siegel, "Mechanical behavior of nanocrystalline Cu and Pd", J. Mater. Res. 6 (1991) pp. 1012.
[31] L. A. Giannuzzi, P. R. Howell, H. W. Pickering and W. R. Bitler, "Diffusion induced recrystallization during ion beam milling ", Scr. Metall. Mater. 24 (1990) pp. 2407.
[32] A.M. El-Sherik, U. Erb, G. Palumbo, K.T. Aust, "Deviations from. Hall-Petch behavior in as-prepared nanocrystalline nickel", Scr. Metall. Mater. 27 (1992) pp. 1185.
[33] R.W. Siegel, G.E. Fougere, "Mechanical properties of nanophase metals", Nanostruct. Mater. 6 (1995) pp. 205.
[34] A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, "On the validity of the. Hall-Petch relationship in nanocrystalline materials", Scr. Metal. 23 (1989) pp. 1679.
[35] K. Lu, W.D. Wei, J.T. Wang, "Microhardness and fracture properties of nanocrystalline Ni-P alloy", Scr. Metall. Mater. 24 (1990) pp. 2319.
[36] G.E. Fougere, J.R. Weertman, R.W. Siegel, S. Kim, "Grain-size dependent hardening and softening of nanocrystalline Cu and Pd", Scr. Metall. Mater. 26 (1992) pp. 1879.
[37] D.A. Konstantinidis, E.C. Aifantis, "On the Anomalous Hardness of Nanocrystalline Materials", Nanostruct. Mater. 10 (1998) pp. 1111.
[38] G. Palumbo, S.J. Thorpe, K.T. Aust, "On the contribution of triple junctions to the structure and. properties of nanocrystalline materials", Scr. Metal. Mater. 24 (1990) pp. 1347.
[39] C. Suryanarayana, D. Mukhopadhyay, S.N. Patankar, F.H. Froes, "Grain size effects in nanocrystalline materials", J. Mater. Res 7 (1992) pp. 2114.
[40] P.G. Sanders, C.J. Youngdahl, J.R. Weertman, "The strength of nanocrystalline metals with and without flaws", Mater. Sci. Eng. A 234-236 (1997) pp. 77.
[41] K. Jia, T.E. Fischer and B. Gallois, Nanostruct.Mater. 10 (1998) pp. 875.
[42] I. N. Sneddon, Int. J. Engng Sci. 3 (1965) pp. 47.
[43] G. M. Pharr, W. C. Oliver and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation", J. Mater. Res. 7 (1992) pp. 613.
[44] R. B. King, "Elastic analysis of some punch problems for a layered medium", Int. J. Solids Structure 23 (1987) pp. 1657.
[45] W. C. Oliver and G. M. Pharr, " An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research 7 (1992) pp. 1564.
[46] D. Gordon, "Properties and Growth of Diamond", INSPEC, the Institution of Electrical Engineers, London, United Kindom (1994).
[47] S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vepřek: Surf. Coat. Technol. 94 (2005) pp. 143.
[48] A. Leyland and A. Matthews: Wear 1-11 (2000) pp. 246.
[49] P. Scherrer, “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachr. Ges. Wiss. Göttingen 26 (1918) pp. 98.
[50] J.I. Langford and A.J.C. Wilson, “Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size,” J. Appl. Cryst. 11 (1978) pp. 102.