研究生: |
康景皓 Kang, Jing-Hao |
---|---|
論文名稱: |
醫療用壓電微泵之PDMS仿生結構設計與效能提升研究 Enhancing the Flow Efficiency of Piezoelectric Medical Micropumps by Using PDMS Biomimetic Diversion Structure |
指導教授: |
賴新一
Lai, Hsin-Yi |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 單晶PZT-4A微致動器 、PDMS導流結構 、微泵 、微流控環境 |
外文關鍵詞: | PZT-4A actuator, PDMS microchannel, micropump, microfluidics environment |
相關次數: | 點閱:58 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據生物心臟瓣膜的收縮和擴張機制,本研究提出了一種仿生導流結構,並將其放置於傳統圓形腔室的微泵。該微泵是由一個單晶PZT-4A微致動器和1:5比例混合而成聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)材料所組成,其作用分別是流量控制以及提供流場導流。
本研究採用弱形式“流-固耦合”建模方法模擬微泵的流場特性,然後為了確保導流結構能產生足夠的整流效果,重新設計PDMS導流結構的幾何參數,進而提升微泵的淨流量與最大背壓達10%以上。數值結果表明導流結構所劃分的前腔室尺寸約6.5 mm、結構厚度為0.1 mm且導流口角度為20°時,微泵可以同時提昇淨流量與最大背壓達10%以上。時序分析結果表明共振特性與流體渦流之耦合效應,使導流結構產生約五倍薄膜變形量的動態響應,具有提高腔室內的壓力擾動且誘發入口處的抵抗渦流,進而降低微泵的回流效應。
研究結果表明PDMS仿生微泵可以高效運作於背壓15-35 cm H2O與流量1.01-2.60 ml/min的操作區間。通過PZT-4A的電頻轉換進行微流量控制並滿足高效液體生醫裝置的微流量控制環境,即0-2.5 ml/min。
In this study, the mechanism of contraction and expansion rectification of the biological heart is investigated. The bionic diversion structure is thus proposed and placed in a traditional circular chamber of the micropump. The micropump is composed of a unimorph PZT-4A actuator and a 1:5 polydimethylsiloxane (PDMS) material. The functions of structure are to control the flow rate and to provide a flow-field diversion to improve efficiency of the system.
The weak form of "fluid-solid coupling" modeling method is introduced to characterize the flow field of the micropump. The method is used to ensure that the structure can produce a good rectification effect, the geometric parameters of the PDMS diversion are carefully designed to enhance both the net flow rate and back pressure of the micropump for more than 10%. The results of time domain analysis show that the coupling effect of resonance characteristics and inlet vortices of the chamber makes the diversion produce a dynamic response of approximately five times of the traditional membrane deformation. By so doing, it does improve the pressure disturbance in the chamber and induce inlet vortices to reduce the backflow effect of the micropump.
The results of this study also show that the PDMS bionic micropump can operate highly effective in the back pressure range of 15-35 cm∙H2O and a flow rate in the middle range of 1.01-2.60 ml/min. The high electrical frequency of PZT-4A is employed to control the flow rate to meet requirement of the microfluidic environment of the proposed efficient biomedical device for 0-2.5 ml/min.
[1] S. Mohith, P.N. Karanth, and S.M. Kulkarni, “Recent trends inmechanical micropumps and their applications: A review,” Mechatronics, Vol. 60, pp. 34–55, 2019.
[2] M.M. Aeinehvand, F. Ibrahim, W. Al-Faqheri, K. Joseph, and M.J. Madou, “Recent advances in the development of micro-pumps, microvalves and micromixers and the integration of carbon electrodes on centrifugal microfluidic platforms,” IJNT, Vol. 15, no. 1/2/3, pp. 53–68, 2018.
[3] K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, and W. Boda, “Design and test of a high-performance piezoelectric micropump for drug delivery,” Sens. Actuators A, Vol. 121, no. 1, pp. 156–161, 2005.
[4] C. Zhang, D. Xing, and Y. Li, “Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends,” Biotechnol. Adv., Vol. 25, no. 5, pp. 483–514, 2007.
[5] C.K. Byun, K. Abi-Samra, Y.K. Cho, and S. Takayama, “Pumps for microfluidic cell culture, Electrophoresis,” Vol. 35, no. 2–3, pp. 245–257, 2014.
[6] C.J. Morris, and F. K. Forster, “Low-order modeling of resonance for fixed-valve micropumps based on first principles,” Journal of Microelectromechanical Systems, Vol. 12, no. 3, pp. 325-334, 2003.
[7] Y.S. Kim, J.H. Kim, and K. Rhee, “Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micropump,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science Vol. 219, no. 10, pp. 1139-1145, 2005.
[8] A. Olsson, G. Stemme, and E. Stemme, “A valve-less planar fluid pump with two pump chambers,” Sensors and Actuators A: Physical, Vol. 47, no. 1-3, pp. 549-556, 1995.
[9] A. Ullmann, “The piezoelectric valve-less pump-performance enhancement analysis,” Sensors and Actuators A: Physical, Vol. 69, no. 1, pp. 97-105, 1998.
[10] C. Mo, R. Wright, W.S. Slaughter, and W.W. Clark, “Behaviour of a unimorph circular piezoelectric actuator,” Smart Mater. Struct., Vol. 15, no. 4, pp. 1094–1102, 2006.
[11] C. Lin, S.C. Hsieh, W.J. Lin, and R.V. Raikar, “Characteristics of recirculation zone structure behind an impulsively started circular cylinder,” J. Eng. Mech., Vol. 138, no. 2, pp. 184–198, 2012.
[12] C.C. Liu, Y.N. Wang, L.M. Fu, and C. Chieh, “Micro-distillation system for formaldehyde concentration detection,” Chem. Eng. J., Vol. 304, pp. 419–425, 2016.
[13] D.J. Laser, and J.G. Santiago, “A review of micropumps,” J. Micromech. Microeng., Vol. 14, no. 6, pp. R35–R64, 2004.
[14] G.M. Whitesides, “The origins and the future of microfluidics,” Nature, Vol. 442, no. 7101, pp. 368-373, 2006.
[15] P.S. Chee, R.A. Rahim, R. Arsat, U. Hashim, and P.L. Leow, “Bidirectional flow micropump based on dynamic rectification,” Sens. Actuators A, Vol. 204, pp. 107–113, 2013.
[16] S. Singh, N. Kumar, D. George, and A.K. Sen, “Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump,” Sens. Actuators A, Vol. 225, pp. 81–94, 2015.
[17] A.B. Wang and M.C. Hsieh, “Unveiling the missing transport mechanism inside the valveless micropump,” Lab Chip., Vol. 12, no. 17, pp. 3024–3027, 2012.
[18] H.J. Sheen, C.J. Hsu, T.H. Wu, C.C. Chang, H.C. Chu, C.Y. Yang, and U. Lei, “Unsteady flow behaviors in an obstacle-type valveless micropump by micro-PIV,” Microfluid. Nanofluid., Vol. 4, no. 4, pp. 331–342, 2008.
[19] V. Merwe, and S. Willem, “A Mems based valveless micropump for biomedical applications,” Doctoral dissertation, University of Stellenbosch, Stellenbosch, 2010.
[20] A. Nisar, N. Afzulpurkar, B. Mahaisavariya, and A. Tuantranont, “Multifield analysis of a piezoelectrically actuated valveless micropump,” Sensors Transducers J, Vol. 94. pp. 176-95, 2008.
[21] H.Y. Lai and J.H. Kang, “System modeling and characterization of enhanced valveless micropumps,” Mech. Based Des. Struct. Mach., pp. 1–22, 2021.
[22] L.D. Liao, P.C. Chao, C.W. Huang, and C.W. Chiu, “DC dynamic and static pull-in predictions and analysis for electrostatically actuated clamped circular micro-plates based on a continuous model,” Journal of Micromechanics and Microengineering, Vol. 20, no.2, p. 025013, 2009.
[23] S. Timoshenko, and S. Woinowsky-Krieger, “Theory of plates and shells,” New York: McGraw-hill, Vol. 2, pp. 240-246, 1959.
[24] S.A. Prasad, B.V. Sankar, L.N. Cattafesta, S. Horowitz, Q. Gallas, and M. Sheplak, “Two-port electroacoustic model of an axisymmetric piezoelectric composite plate,” In 43 rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, CO, 2002.
[25] 張家銘, 壓電式無閥微泵方生導流系統設計與效能提升研究. 成功大學機械工程學系碩士學位論文, 1-227 (指導教授: 賴新一 博士), 2021.
[26] 李輝煌,ANSYS工程分析基礎與觀念,高立圖書有限公司2005年
[27] ANSYS 17.0 Help:Mechanical APDL
[28] D. Armani, C. Liu, and N. Aluru, Re-configurable fluid circuits by PDMS elastomer micromachining, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems, pp. 222–227, 1999.