| 研究生: |
張瑋恩 Chang, Wei-En |
|---|---|
| 論文名稱: |
探討凝血酶調節素在癌細胞非貼附性生長中所扮演的角色 The Role of Thrombomodulin in Modulating Anchorage-independent Growth of Tumor Cells |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 凝血酶調節素 、非貼附性生長 、扁菱蛋白 |
| 外文關鍵詞: | Thrombomodulin, Anchorage-independent growth, Rhomboid |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝血酶調節素(Thrombomodulin)是第一型膜醣蛋白(glycoprotein),在細胞細胞間的黏附以及癌症生成(tumorigenesis)上扮演重要角色。癌症生成是個極為複雜的過程,其中又包括血管新生(angiogenesis)和癌症轉移(metastasis)。細胞的非貼附性生長(anchorage-independent growth)被認為是細胞變形(transformation)的特徵,且能夠幫助癌症轉移。可溶性凝血酶調節素(soluble TM)已被發現在癌症病人的血漿中有上升的情形,但究竟可溶性凝血酶調節素的生理功能為何目前還不清楚。扁菱蛋白(Rhomboid)已被證實會辨識凝血酶調節素並且在其穿膜區做切割,進而產生可溶性的凝血酶調節素。在本篇研究當中,我們將探討可溶性凝血酶調節素是否能夠促進癌細胞的非貼附性生長。不同的子宮頸癌細胞株均可以在軟瓊脂培養基(soft agar assay)當中形成群落(colony)並且存活到第14天。利用慢病毒(lentivirus)感染細胞,送入凝血酶調節素的短髮夾核醣核酸(short hairpin RNA)來抑制HeLa229細胞中凝血酶調節素蛋白表現,並且使用西方墨點法確定凝血酶調節素的表現量。將HeLa229上的凝血酶調節素蛋白抑制後會降低細胞懸浮培養時的群落數目與群落大小。除此之外,和對照組細胞相比,降低凝血酶調節素的表現會降低ERK的磷酸化以及增加caspase 3活化。在對照組細胞當中,扁菱蛋白在懸浮性培養24和48小時後有大量的表現,然而在凝血酶調節素被抑制的細胞中則無此現象。可溶性凝血酶調節素的蛋白量在凝血酶調節素被抑制時也有明顯的下降。利用DCI(扁菱蛋白的抑制劑)處理細胞後,ERK的磷酸化以及可溶性凝血酶調節素的蛋白量都會減少。利用重組蛋白TMD123處理細胞後,細胞懸浮培養的存活率和ERK的磷酸化都有上升的現象;而caspase 3則有被抑制的情形。總結以上,凝血酶調節素在癌細胞懸浮時會被扁菱蛋白切割釋放可溶性凝血酶調節素,而可溶性凝血酶調節素可以促進癌細胞的非貼附性生長。
Thrombomodulin (TM), a type I transmembrane glycoprotein plays important roles in cell adhesion and tumorigenesis. Tumorigenesis is a complicated process including angiogenesis and metastasis. Anchorage-independent growth has been recognized as a hallmark of cell transformation which promotes tumor metastasis. Increase of soluble TM was found in plasma of cancer patients; however, the biological function of soluble TM remains unclear. Moreover, rhomboid, an intramembrane protease specifically cleaves TM at its transmembrane domain, and cause release of soluble TM from cell membrane. In this study, we investigated whether soluble TM promotes anchorage-independent growth in tumor cells. Human cervical cancer cell lines formed colonies in soft agar and survived until day 14th. Lentivirus transduction of short hairpin RNA was used to knockdown TM expression in HeLa229 cells (HeLa229-shTM), and the efficiency of TM knockdown was confirmed by Western blotting. HeLa229-shTM showed lower colony numbers and smaller size in suspension culture. Moreover, knockdown of TM in HeLa229 decreased extracellular signal regulated kinase phosphorylation and increased caspase 3 activation compared with vector control (HeLa229-shLuc). The level of rhomboid was upregulated in HeLa229-shLuc in suspension culture for 24 and 48 hour; however, TM-knockdown cells had no such effect. After treatment with dichloroisocoumarin, a rhomboid inhibitor, the levels of soluble TM and ERK phosphorylation were decreased. Recombinant TM domains 1, 2 and 3 increased cell viability, ERK phosphorylation and decreased caspase 3 activation in suspension. In summary, TM was shedded by rhomboid, and soluble TM promoted anchorage-independent growth of tumor cells.
1. Weigelt B, Peterse JL, van 't Veer LJ. Breast cancer metastasis: Markers and models. Nat Rev Cancer. 2005;5:591-602
2. Mehlen P, Puisieux A. Metastasis: A question of life or death. Nat Rev Cancer. 2006;6:449-458
3. Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L, Kimchi A. Dap kinase links the control of apoptosis to metastasis. Nature. 1997;390:180-184
4. Glinsky GV, Glinsky VV, Ivanova AB, Hueser CJ. Apoptosis and metastasis: Increased apoptosis resistance of metastatic cancer cells is associated with the profound deficiency of apoptosis execution mechanisms. Cancer Lett. 1997;115:185-193
5. Chiarugi P, Giannoni E. Anoikis: A necessary death program for anchorage-dependent cells. Biochem Pharmacol. 2008;76:1352-1364
6. Montgomery AM, Reisfeld RA, Cheresh DA. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci U S A. 1994;91:8856-8860
7. Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prevost N, Tarin D, Shattil SJ, Cheresh DA. An integrin alpha(v)beta(3)-c-src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med. 2009;15:1163-1169
8. Kantak SS, Kramer RH. E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem. 1998;273:16953-16961
9. Lawlor ER, Scheel C, Irving J, Sorensen PH. Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in ewing tumors. Oncogene. 2002;21:307-318
10. Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion: Involvement of its lectin-like domain. J Biol Chem. 2003;278:46750-46759
11. Hanly AM, Hayanga A, Winter DC, Bouchier-Hayes DJ. Thrombomodulin: Tumour biology and prognostic implications. Eur J Surg Oncol. 2005;31:217-220
12. Zekanowska E, Cieslinski K, Kotschy M, Lambrecht W. [levels of soluble thrombomodulin in blood of patients with lung cancer]. Pneumonol Alergol Pol. 2001;69:174-178
13. Xu GB, Luo LH, Lu XG. [detection of thrombomodulin in both plasma and tissue extracts of cancer patients and its clinical significance]. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2003;32:141-144
14. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol. 1997;9:701-706
15. Zhang Z, Vuori K, Reed JC, Ruoslahti E. The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates bcl-2 expression. Proc Natl Acad Sci U S A. 1995;92:6161-6165
16. Howlett AR, Bailey N, Damsky C, Petersen OW, Bissell MJ. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma. J Cell Sci. 1995;108 ( Pt 5):1945-1957
17. Gilmore AP. Anoikis. Cell Death Differ. 2005;12 Suppl 2:1473-1477
18. Reddig PJ, Juliano RL. Clinging to life: Cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 2005;24:425-439
19. Geiger TR, Peeper DS. Metastasis mechanisms. Biochim Biophys Acta. 2009;1796:293-308
20. Sakuma Y, Takeuchi T, Nakamura Y, Yoshihara M, Matsukuma S, Nakayama H, Ohgane N, Yokose T, Kameda Y, Tsuchiya E, Miyagi Y. Lung adenocarcinoma cells floating in lymphatic vessels resist anoikis by expressing phosphorylated src. J Pathol. 2010;220:574-585
21. Workman HC, Miller JK, Ingalla EQ, Kaur RP, Yamamoto DI, Beckett LA, Young LJ, Cardiff RD, Borowsky AD, Carraway KL, Sweeney C, Carraway KL, 3rd. The membrane mucin muc4 is elevated in breast tumor lymph node metastases relative to matched primary tumors and confers aggressive properties to breast cancer cells. Breast Cancer Res. 2009;11:R70
22. Tang MK, Zhou HY, Yam JW, Wong AS. C-met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia. 2010;12:128-138
23. Zhong X, Hoelz DJ, Kumar HR, Sandoval JA, Rescorla FJ, Hickey RJ, Malkas LH. Bin1 is linked to metastatic potential and chemosensitivity in neuroblastoma. Pediatr Blood Cancer. 2009;53:332-337
24. Haenssen KK, Caldwell SA, Shahriari KS, Jackson SR, Whelan KA, Klein-Szanto AJ, Reginato MJ. Erbb2 requires integrin alpha5 for anoikis resistance via src regulation of receptor activity in human mammary epithelial cells. J Cell Sci. 2010;123:1373-1382
25. Zhang Y, Lu H, Dazin P, Kapila Y. Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: Fibronectin and integrin alphav mediate survival signals through focal adhesion kinase. J Biol Chem. 2004;279:48342-48349
26. Luebke-Wheeler JL, Nedredal G, Yee L, Amiot BP, Nyberg SL. E-cadherin protects primary hepatocyte spheroids from cell death by a caspase-independent mechanism. Cell Transplant. 2009;18:1281-1287
27. Ma XK, Wang L, Li Y, Yang XM, Zhao P, Tang H, Zhu P, Li L, Chen ZN. Hab18g/cd147 cell-cell contacts confer resistance of a hek293 subpopulation to anoikis in an e-cadherin-dependent manner. BMC Cell Biol. 2010;11:27
28. Kang HG, Jenabi JM, Zhang J, Keshelava N, Shimada H, May WA, Ng T, Reynolds CP, Triche TJ, Sorensen PH. E-cadherin cell-cell adhesion in ewing tumor cells mediates suppression of anoikis through activation of the erbb4 tyrosine kinase. Cancer Res. 2007;67:3094-3105
29. Coniglio SJ, Jou TS, Symons M. Rac1 protects epithelial cells against anoikis. J Biol Chem. 2001;276:28113-28120
30. Cheng TL, Symons M, Jou TS. Regulation of anoikis by cdc42 and rac1. Exp Cell Res. 2004;295:497-511
31. Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A. Cdc42 induces filopodia by promoting the formation of an irsp53:Mena complex. Curr Biol. 2001;11:1645-1655
32. Webb CP, Van Aelst L, Wigler MH, Woude GF. Signaling pathways in ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998;95:8773-8778
33. Lee TK, Poon RT, Yuen AP, Man K, Yang ZF, Guan XY, Fan ST. Rac activation is associated with hepatocellular carcinoma metastasis by up-regulation of vascular endothelial growth factor expression. Clin Cancer Res. 2006;12:5082-5089
34. Shin SI, Freedman VH, Risser R, Pollack R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci U S A. 1975;72:4435-4439
35. Macias-Perez I, Borza C, Chen X, Yan X, Ibanez R, Mernaugh G, Matrisian LM, Zent R, Pozzi A. Loss of integrin alpha1beta1 ameliorates kras-induced lung cancer. Cancer Res. 2008;68:6127-6135
36. Cariati M, Naderi A, Brown JP, Smalley MJ, Pinder SE, Caldas C, Purushotham AD. Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the mcf7 breast cancer cell line. Int J Cancer. 2008;122:298-304
37. Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein c. Proc Natl Acad Sci U S A. 1981;78:2249-2252
38. Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE. Human thrombomodulin: Complete cdna sequence and chromosome localization of the gene. Biochemistry. 1987;26:4350-4357
39. Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor v activation. J Biol Chem. 1982;257:7944-7947
40. Esmon CT. The roles of protein c and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989;264:4743-4746
41. Kumada T, Dittman WA, Majerus PW. A role for thrombomodulin in the pathogenesis of thrombin-induced thromboembolism in mice. Blood. 1988;71:728-733
42. Suzuki K, Nishioka J, Hayashi T, Kosaka Y. Functionally active thrombomodulin is present in human platelets. J Biochem. 1988;104:628-632
43. Salem HH, Maruyama I, Ishii H, Majerus PW. Isolation and characterization of thrombomodulin from human placenta. J Biol Chem. 1984;259:12246-12251
44. Maruyama I, Bell CE, Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J Cell Biol. 1985;101:363-371
45. McCachren SS, Diggs J, Weinberg JB, Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood. 1991;78:3128-3132
46. Soff GA, Jackman RW, Rosenberg RD. Expression of thrombomodulin by smooth muscle cells in culture: Different effects of tumor necrosis factor and cyclic adenosine monophosphate on thrombomodulin expression by endothelial cells and smooth muscle cells in culture. Blood. 1991;77:515-518
47. Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ, Sturm MT, Chen Y, Lentz SR. Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J Clin Invest. 1994;93:1846-1851
48. Pindon A, Hantai D, Jandrot-Perrus M, Festoff BW. Novel expression and localization of active thrombomodulin on the surface of mouse brain astrocytes. Glia. 1997;19:259-268
49. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappab and mitogen-activated protein kinase pathways. J Exp Med. 2002;196:565-577
50. Shi CS, Shi GY, Hsiao SM, Kao YC, Kuo KL, Ma CY, Kuo CH, Chang BI, Chang CF, Lin CH, Wong CH, Wu HL. Lectin-like domain of thrombomodulin binds to its specific ligand lewis y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112:3661-3670
51. Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood. 1997;89:652-661
52. Maruyama I, Majerus PW. The turnover of thrombin-thrombomodulin complex in cultured human umbilical vein endothelial cells and a549 lung cancer cells. Endocytosis and degradation of thrombin. J Biol Chem. 1985;260:15432-15438
53. Tsiang M, Lentz SR, Sadler JE. Functional domains of membrane-bound human thrombomodulin. Egf-like domains four to six and the serine/threonine-rich domain are required for cofactor activity. J Biol Chem. 1992;267:6164-6170
54. Hamada H, Ishii H, Sakyo K, Horie S, Nishiki K, Kazama M. The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for swiss 3t3 cells. Blood. 1995;86:225-233
55. Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation. 2005;111:1627-1636
56. Yonezawa S, Maruyama I, Sakae K, Igata A, Majerus PW, Sato E. Thrombomodulin as a marker for vascular tumors. Comparative study with factor viii and ulex europaeus i lectin. Am J Clin Pathol. 1987;88:405-411
57. Collins CL, Fink LM, Hsu SM, Schaefer R, Ordonez N. Thrombomodulin staining of mesothelioma cells. Hum Pathol. 1992;23:966
58. Collins CL, Ordonez NG, Schaefer R, Cook CD, Xie SS, Granger J, Hsu PL, Fink L, Hsu SM. Thrombomodulin expression in malignant pleural mesothelioma and pulmonary adenocarcinoma. Am J Pathol. 1992;141:827-833
59. Wilhelm S, Wilhelm O, Schmitt M, Mobus V, Kreienberg R, Graeff H. [expression of the cell surface receptor for thrombin, thrombomodulin, in human ovarian cancer cells]. Gynakol Geburtshilfliche Rundsch. 1993;33 Suppl 1:202-203
60. Maruno M, Yoshimine T, Isaka T, Kuroda R, Ishii H, Hayakawa T. Expression of thrombomodulin in astrocytomas of various malignancy and in gliotic and normal brains. J Neurooncol. 1994;19:155-160
61. Lager DJ, Callaghan EJ, Worth SF, Raife TJ, Lentz SR. Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am J Pathol. 1995;146:933-943
62. Appleton MA, Attanoos RL, Jasani B. Thrombomodulin as a marker of vascular and lymphatic tumours. Histopathology. 1996;29:153-157
63. Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 1995;55:4196-4200
64. Tolnay E, Wiethege T, Muller KM. Expression and localization of thrombomodulin in preneoplastic bronchial lesions and in lung cancer. Virchows Arch. 1997;430:209-212
65. Tabata M, Sugihara K, Yonezawa S, Yamashita S, Maruyama I. An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. J Oral Pathol Med. 1997;26:258-264
66. Kim SJ, Shiba E, Ishii H, Inoue T, Taguchi T, Tanji Y, Kimoto Y, Izukura M, Takai S. Thrombomodulin is a new biological and prognostic marker for breast cancer: An immunohistochemical study. Anticancer Res. 1997;17:2319-2323
67. Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern DM, Rosenberg RD, Ziegler R, Nawroth PP. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 1998;101:1301-1309
68. Matsushita Y, Yoshiie K, Imamura Y, Ogawa H, Imamura H, Takao S, Yonezawa S, Aikou T, Maruyama I, Sato E. A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin-expressing clone--thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma. Cancer Lett. 1998;127:195-201
69. Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J Clin Invest. 1985;76:2178-2181
70. Ikegami T, Oh H, Nakamura H, Asai T, Yoshida S. [serum thrombomodulin levels in patients receiving allogeneic bone marrow transplantation]. Rinsho Ketsueki. 1993;34:773-775
71. Testa S, Manna A, Porcellini A, Maffi F, Morstabilini G, Denti N, Macchi S, Rosti G, Porcellini G, Cassi D, Ferrari L. Increased plasma level of vascular endothelial glycoprotein thrombomodulin as an early indicator of endothelial damage in bone marrow transplantation. Bone Marrow Transplant. 1996;18:383-388
72. Seigneur M, Constans J, Blann A, Renard M, Pellegrin JL, Amiral J, Boisseau M, Conri C. Soluble adhesion molecules and endothelial cell damage in hiv infected patients. Thromb Haemost. 1997;77:646-649
73. Ishii H, Uchiyama H, Kazama M. Soluble thrombomodulin antigen in conditioned medium is increased by damage of endothelial cells. Thromb Haemost. 1991;65:618-623
74. Morishita E, Saito M, Asakura H, Jokaji H, Uotani C, Kumabashiri I, Yamazaki M, Matsuda T. Increased levels of plasma thrombomodulin in chronic myelogenous leukemia. Am J Hematol. 1992;39:183-187
75. Akiyama K, Nakamura K, Makino I. [evaluation of plasma thrombomodulin (tm) levels in patients with liver disease]. Nippon Shokakibyo Gakkai Zasshi. 1992;89:2559-2567
76. Aso Y, Inukai T, Takemura Y. Mechanisms of elevation of serum and urinary concentrations of soluble thrombomodulin in diabetic patients: Possible application as a marker for vascular endothelial injury. Metabolism. 1998;47:362-365
77. Nakagawa I, Matsubara T, Hori T, Imai S, Ozaki K, Mezaki T, Nasuno A, Kubota K, Nakano M, Yamazoe M, Aizawa Y. [significance of soluble thrombomodulin in the coronary circulation of patients with coronary artery disease]. J Cardiol. 2001;38:145-152
78. Lindahl AK, Boffa MC, Abildgaard U. Increased plasma thrombomodulin in cancer patients. Thromb Haemost. 1993;69:112-114
79. Turk B. Targeting proteases: Successes, failures and future prospects. Nat Rev Drug Discov. 2006;5:785-799
80. Freeman M. Rhomboid proteases and their biological functions. Annu Rev Genet. 2008;42:191-210
81. Wang Y, Zhang Y, Ha Y. Crystal structure of a rhomboid family intramembrane protease. Nature. 2006;444:179-180
82. Lemberg MK, Freeman M. Cutting proteins within lipid bilayers: Rhomboid structure and mechanism. Mol Cell. 2007;28:930-940
83. Urban S, Freeman M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol Cell. 2003;11:1425-1434
84. Freeman M. Rhomboids: 7 years of a new protease family. Semin Cell Dev Biol. 2009;20:231-239
85. Urban S, Lee JR, Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell. 2001;107:173-182
86. Lohi O, Urban S, Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by mammalian rhomboids. Curr Biol. 2004;14:236-241
87. Diaz-Montero CM, McIntyre BW. Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents. BMC Cancer. 2005;5:39
88. Priori ES, Wilbur JR, Allen PT, East JL, Dmochowski L. Transformation of cells in human bone tumor cultures. Bibl Haematol. 1975:185-196
89. Johnson TR, Khandrika L, Kumar B, Venezia S, Koul S, Chandhoke R, Maroni P, Donohue R, Meacham RB, Koul HK. Focal adhesion kinase controls aggressive phenotype of androgen-independent prostate cancer. Mol Cancer Res. 2008;6:1639-1648
90. Urban S, Wolfe MS. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc Natl Acad Sci U S A. 2005;102:1883-1888
91. Hernandez Gaspar R, de los Toyos JR, Alvarez Marcos C, Riera JR, Sampedro A. Quantitative immunohistochemical analyses of the expression of e-cadherin, thrombomodulin, cd44h and cd44v6 in primary tumours of pharynx/larynx squamous cell carcinoma and their lymph node metastases. Anal Cell Pathol. 1999;18:183-190
92. Prall F, Ostwald C. High-degree tumor budding and podia-formation in sporadic colorectal carcinomas with k-ras gene mutations. Hum Pathol. 2007;38:1696-1702
93. Sarioglu S, Acara C, Akman FC, Dag N, Ecevit C, Ikiz AO, Cetinayak OH, Ada E. Tumor budding as a prognostic marker in laryngeal carcinoma. Pathol Res Pract. 2010;206:88-92
94. Choi HJ, Park KJ, Shin JS, Roh MS, Kwon HC, Lee HS. Tumor budding as a prognostic marker in stage-iii rectal carcinoma. Int. J. Colorectal Dis. 2007;22:863-868
95. Zou H, Thomas SM, Yan ZW, Grandis JR, Vogt A, Li LY. Human rhomboid family-1 gene rhbdf1 participates in gpcr-mediated transactivation of egfr growth signals in head and neck squamous cancer cells. FASEB J. 2009;23:425-432
96. Abba MC, Lacunza E, Nunez MI, Colussi A, Isla-Larrain M, Segal-Eiras A, Croce MV, Aldaz CM. Rhomboid domain containing 2 (rhbdd2): A novel cancer-related gene over-expressed in breast cancer. Biochim Biophys Acta. 2009;1792:988-997
校內:2020-12-31公開