| 研究生: |
莊闓欣 Chuang, Kai-Hsin |
|---|---|
| 論文名稱: |
以高固含量鐵基合金粉末磁性漿料製備電源電感器之研究 Iron-based alloy power inductors prepared by using high-solid-content magnetic pastes |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 一體成型電感器 、磁性漿料 、環氧樹脂 、單體 、鈦酸耦合劑 |
| 外文關鍵詞: | titanate coupling agent, reactive diluent, power inductors |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
用濕式成型法製作電感器膠體時,為調整高固含量膠體的流變行為,需添加較多的有機溶劑,以利後續網印製程。但此方法使元件在烘乾製程時產生較大的收縮量,進而產生外觀之缺陷(龜裂、層裂),降低元件良率,因此需透過大量外觀檢測之篩選,增加生產成本。
本研究重新設計磁性粉末漿料的組成以及製備技術,雙酚A環氧樹脂有優良的機械、黏結、電氣和耐腐蝕性,以及收縮率低、成本低廉等特點,利用不同比例的活性稀釋劑(單體),達到降低漿料黏度的目的。且由於活性稀釋劑會參與固化反應,成為交聯網絡結構的一部份,因而改變環氧樹脂特性,故研究發現,隨著單體比例增加,胚體之密度、磁性質以及電感性質也隨著增加;但單體添加量大於環氧樹脂的40wt% 時,由於單體本身的強度較低,胚體拉伸強度會隨著單體添加量增加而下降。
透過添加不同比例(0.8、1.2、1.6、2.0wt%)的鈦酸耦合劑(LICA 38),對磁性粉末表面進行改質,以改善粉末與樹脂的分散性,進而降低漿料的黏度,使有機溶劑的添加量減少;且由於改質後粉末表面與環氧樹脂有較強的結合力,因此可以提高胚體密度,增加導磁係數,並且在高固含量的情況下,將胚體維持在一定的強度。
Power inductors were successfully developed by using magnetic paste with high solid content of FeSiCr alloy/carbonyl iron powder composite. The magnetic powder was surface-modified with titanate coupling agent to improve the dispersibility of the powder in the epoxy resin, thereby improving the magnetic powder and epoxy resin compatibility and reducing the viscosity of the magnetic paste with high solid content.
Bisphenol A epoxy resin has the benefits of excellent mechanical, bonding, electrical properties and corrosion resistance, low shrinkage, low cost, etc. The viscosity of the magnetic paste can be further reduced by substituting some low viscosity reactive diluent (monomer) for bisphenol A epoxy resin. It was observed that the relative density and permeability increased with increasing the monomer addition due to the monomer may act as the lubricant to help the magnetic particle rearrangement during compaction. However, as the addition of monomer was more than half weight percent of the epoxy resin, the bending strength of the sample decreased.
[1] S. Y. T. M. J. Tung, "Introductions to Magnetic Core and Power Inductor Technology," Industrial Material vol. 394, 2019.
[2] 陳麒合, "利用膠鑄成型法製作鐵矽鉻合金粉末一體成型電感之研究," 國立成功大學 資源工程研究所 碩士論文, 108.
[3] S. Y. T. M. J. Tung, "Introductions to Metal Power Inductor Technology for Power Modules," Industrial Material 2016.
[4] H. Moro and T. Suzuki, "Coil-embedded dust core and method for manufacturing the same, and coil and method for manufacturing the same," ed: Google Patents, 2005.
[5] 鄭明得、余志成, "薄型大電流電感器鐵芯粉末調配之穩健最佳化設計," 中國機械工程學會第二十六屆全國學術研討會論文集, 2009.
[6] "Inductors―Part 3 Inductor Types and Manufacturing Methods," TDK Magazine.
[7] TOKEN, "What is a Inductor."
[8] 柯文淞, "晶片電感," 晶片型電子陶瓷材料及元件技術, 1993.
[9] 田民波, "材料學概論," 2015.
[10] 何冠廷, "鐵矽鉻壓粉磁芯之微觀結構與磁性質關係之研究," 國立成功大學 資源工程研究所 碩士論文, 2016.
[11] 粘孝先, "軟磁錳鋅鐵氧鐵芯鐵損之分析," 國立成功大學電機工程學系,博士論文, 2007.
[12] P. Kollár, Z. Birčáková, J. Füzer, R. Bureš, and M. Fáberová, "Power loss separation in Fe-based composite materials," Journal of magnetism and magnetic materials, vol. 327, pp. 146-150, 2013.
[13] C. R. Hendricks, V. Amarakoon, and D. Sullivan, "Processing of manganese zinc ferrites for high-frequency switch-mode power supplies," American Ceramic Society Bulletin;(United States), vol. 70, no. 5, 1991.
[14] H. Shokrollahi and K. Janghorban, "Soft magnetic composite materials (SMCs)," Journal of Materials Processing Technology, vol. 189, no. 1-3, pp. 1-12, 2007.
[15] T. Maeda et al., "Development of super low iron-loss P/M soft magnetic material," SEI TECHNICAL REVIEW-ENGLISH EDITION-, vol. 60, p. 3, 2005.
[16] O. O. Omatete, M. A. Janney, and S. D. Nunn, "Gelcasting: from laboratory development toward industrial production," Oak Ridge National Lab., TN (United States), 1995.
[17] L. Montanaro, B. Coppola, P. Palmero, and J.-M. Tulliani, "A review on aqueous gelcasting: A versatile and low-toxic technique to shape ceramics," Ceramics International, vol. 45, no. 7, pp. 9653-9673, 2019.
[18] M. Huang, P. He, J. Yang, F. Duan, S. C. Lim, and M. S. Yip, "Fabrication and characterization of mini alumina ceramic turbine rotor using a tailored gelcasting process," Ceramics International, vol. 40, no. 6, pp. 7711-7722, 2014.
[19] R. Gilissen, J. Erauw, A. Smolders, E. Vanswijgenhoven, and J. Luyten, "Gelcasting, a near net shape technique," Materials & Design, vol. 21, no. 4, pp. 251-257, 2000.
[20] H. Lee and K. Neville, "Handbook of epoxy resins," 1967.
[21] H. Lee and K. Neville, "Epoxy Resin : Their Application nd Technology," 1957.
[22] 林承逸, "自我修復環氧樹脂之研究," 東海大學化學工程與材料工程研究所碩士論文, 2017.
[23] 汪建民, "粉末冶金技術手冊," 中國粉末冶金學會, 1994.
[24] 盧壽慈, "粉體加工技術," 1999.
[25] Y. Xie, C. A. Hill, Z. Xiao, H. Militz, and C. Mai, "Silane coupling agents used for natural fiber/polymer composites: A review," Composites Part A: Applied Science and Manufacturing, vol. 41, no. 7, pp. 806-819, 2010.
[26] H.-I. Hsiang, C.-C. Chen, and J.-Y. Tsai, "Dispersion of nonaqueous Co2Z ferrite powders with titanate coupling agent and poly(vinyl butyral)," Applied Surface Science, vol. 245, no. 1-4, pp. 252-259, 2005.
[27] R. Rothon, Particulate-filled polymer composites. iSmithers Rapra Publishing, 2003.
[28] 汪建民(編輯), "材料分析," 中國材料科學學會, 1998.
[29] S. Lin, B. Bulkin, and E. Pearce, "Epoxy resins. III. Application of fourier transform IR to degradation studies of epoxy systems," Journal of Polymer Science: Polymer Chemistry Edition, vol. 17, no. 10, pp. 3121-3148, 1979.
[30] 黄筆武, 姜安坤, 翁子驤, and 楊志宏, "正丁基缩水甘油醚的合成及作为陽離子型 UV 固化稀釋劑的研究," 精细石油化工, vol. 27, no. 4, pp. 23-26, 2010.
[31] J. Wan, Z.-Y. Bu, C.-J. Xu, B.-G. Li, and H. Fan, "Learning about novel amine-adduct curing agents for epoxy resins: Butyl-glycidylether-modified poly(propyleneimine) dendrimers," Thermochimica Acta, vol. 519, no. 1-2, pp. 72-82, 2011.
[32] Z.-K. Chen, G. Yang, J.-P. Yang, S.-Y. Fu, L. Ye, and Y.-G. Huang, "Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether," Polymer, vol. 50, no. 5, pp. 1316-1323, 2009.
[33] J. A. Lewis, "Colloidal processing of ceramics," Journal of the American Ceramic Society, vol. 83, no. 10, pp. 2341-2359, 2000.
[34] G. Scott and D. Kilgour, "The density of random close packing of spheres," Journal of Physics D: Applied Physics, vol. 2, no. 6, p. 863, 1969.
[35] A. J. Bombard, I. Joekes, M. R. Alcantara, and M. Knobel, "Magnetic susceptibility and saturation magnetization of some carbonyl iron powders used in magnetorheological fluids," in Materials science forum, 2003, vol. 416: Transtec Publications; 1999, pp. 753-758.
[36] Z. Bensebaa, B. Bouzabata, A. Otmani, A. Djekoun, A. Kihal, and J. Grenèche, "Characterization of nanocrystalline FeSiCr powders prepared by ball milling," Journal of magnetism and magnetic materials, vol. 322, no. 15, pp. 2099-2103, 2010.
[37] H.-I. Hsiang, L.-F. Fan, and K.-T. Ho, "Minor yttrium nitrate addition effect on FeSiCr alloy powder core electromagnetic properties," Journal of Magnetism and Magnetic Materials, vol. 444, pp. 1-6, 2017.
[38] H.-p. Xu, R.-w. Wang, D. Wei, and C. Zeng, "Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores," Journal of Magnetism and Magnetic Materials, vol. 385, pp. 326-330, 2015.
[39] S. F. Chen, H. Y. Chang, S. J. Wang, S. H. Chen, and C. C. Chen, "Enhanced electromagnetic properties of Fe–Cr–Si alloy powders by sodium silicate treatment," Journal of Alloys and Compounds, vol. 637, pp. 30-35, 2015.
[40] Y. Sugawa, K. Ishidate, M. Sonehara, and T. Sato, "Carbonyl-iron/epoxy composite magnetic core for planar power inductor used in package-level power grid," IEEE transactions on magnetics, vol. 49, no. 7, pp. 4172-4175, 2013.
[41] M. Koeda, A. Harada, H. Ono, T. Ishikura, T. Kuroda, and H. Moro, "Investigation of Carbonyl Iron Powder for Development of Power Inductors for High Frequency," Electronics and Communications in Japan, vol. 96, no. 9, pp. 46-52, 2013.
[42] B. Zou, T. Zhou, and J. Hu, "Effect of amorphous evolution on structure and absorption properties of FeSiCr alloy powders," Journal of magnetism and magnetic materials, vol. 335, pp. 17-20, 2013.
[43] M. Sonehara, K. Furihata, J. Koguchi, S. Tanaka, and T. Sato, "Fundamental study of high Q‐factor RF spiral inductor using carbonyl‐iron/epoxy composite magnetic core," IEEJ Transactions on Electrical and Electronic Engineering, vol. 11, pp. S3-S8, 2016.
[44] B. Singh, A. Verma, and M. Gupta, "Studies on adsorptive interaction between natural fiber and coupling agents," Journal of Applied Polymer Science, vol. 70, no. 9, pp. 1847-1858, 1998.
[45] C. Han, C. Sandford, and H. Yoo, "Effects of titanate coupling agents on the rheological and mechanical properties of filled polyolefins," Polymer Engineering & Science, vol. 18, no. 11, pp. 849-854, 1978.
[46] W.-S. Chen, Y.-L. Chang, H.-I. Hsiang, F.-C. Hsu, and F.-S. Yen, "Effects of titanate coupling agent on the dielectric properties of NiZn ferrite powders–epoxy resin coatings," Ceramics International, vol. 37, no. 7, pp. 2347-2352, 2011.