簡易檢索 / 詳目顯示

研究生: 蕭凱友
Hsiao, Kai-Yo
論文名稱: 具矩形小翼對之T型微流道中的流體混合
Mixing of fluids in a T-microchannel with rectangular winglet pairs
指導教授: 吳志陽
Wu, Chil-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 170
中文關鍵詞: 矩形小翼對田口法
外文關鍵詞: RWP, Taguchi method
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出在T型微流道中加入矩形小翼對以促進流體混合,並使用田口法找出微混合器中較佳的幾何參數組合,選用的幾何參數包含矩形小翼對攻角、矩形小翼對高度、主流道中心與矩形小翼對開口中心處的距離及矩形小翼對之縱向間距。本研究使用數值模擬軟體CFDRC模擬微混合器中流體的混合現象,並配合實驗觀察在微混合器中實際的流動現象。製程上,以光微影技術製作微混合器母模,使用PDMS翻模並與載玻片接合完成微混合器之製作。最後使用雷射共軛焦顯微鏡觀察微混合器中流體的流動現象。本文結果顯示:(一) 矩形小翼的幾何參數對流體混合影響由大到小依序為:主流道中心與矩形小翼對開口中心處的距離 ,矩形小翼對攻角 ,矩形小翼對高度 ,矩形小翼對之縱向間距 ;(二) 在雷諾數足夠大時,流體流經具週期性排列之矩形小翼對產生的縱向渦流對與在各組矩形小翼對後的縱向渦流呈週期性變換位置,此兩種作用下,能有效且快速地促進混合;(三) 具矩形小翼對之微混合器相較於具擋板之微混合器有較好的混合效果;(四) 在高寬比1:3之流道中,以 0.167 、 22.5 o、 0.75 、 1.5 之矩形小翼對配置的混合效果最佳。

    In this work, we propose the T-microchannel with rectangular winglet pairs ( RWP ) to enhance fluid mixing. The Taguchi method is applied to find out the better combination of the geometric parameters. The geometric parameters considered include the attack angle of RWP , the height of RWP , the distance between the center of the major channel and the center of the RWP , and the longitudinal interval of the RWP . We use the commercial codes, CFDRC, to simulate the fluid mixing in the micromixers. The SU-8 ( thick film photoresist ) is used to fabricate the mold of the micromixers by photolithography. Then we replicate the mold by PDMS ( polydimethysiloxane ) and bond the mold with a cover glass to complete the fabrication of a micromixer. Finally, the fluid flow in the micromixers is observed by a laser confocal spectral microscopy. The results show the following trends. (i) The effectiveness of the RWP geometric parameters is ranked as: > > > . (ii) When the Reynolds number is large enough, the fluids which flow through the RWP with periodic arrangement will generate the longitudinal vortex pair. And the longitudinal vortex pair will change their position periodically. Under these two effects, the fluids can be mixed effectively and rapidly. (iii) The mixing efficiency of the micromixers with RWP is better than that of micromixers with baffles built on the wall. (iv) When 0.167 , 22.5 o, 0.75 , and 1.5 , the mixing efficiency is the best for the channels with height to width ratio is 1/3.

    摘要.......................................................i Abstract..................................................ii 誌謝.....................................................iii 目錄......................................................iv 表目錄....................................................vii 圖目錄...................................................viii 符號說明.................................................xxii 第一章 緒論...............................................1 1-1 研究背景............................................1 1-2 文獻回顧............................................1 1-3 研究動機............................................4 1-4 本文架構............................................5 第二章 理論與數值模擬.......................................6 2-1 微混合器設計概述......................................6 2-2 基本假設............................................6 2-3 統御方程式..........................................7 2-4 邊界條件............................................7 2-5 無因次化分析.........................................8 2-6 數值模擬...........................................10 2-6-1 CFD-GEOM 流道幾何形狀與網格建立.......................10 2-6-2 CFD-ACE+ 模擬運算..................................10 2-6-3 CFD-VIEW後處理.....................................11 2-7 混合度.................................................11 第三章 應用田口法之微混合器設計..............................13 3-1 微混合器外型與幾何參數設計............................13 3-2 田口法.............................................13 3-3 最佳化流道設計......................................15 第四章 微混合器之製作與實驗觀測..............................17 4-1 微混合器之製作程序...................................17 4-1-1 光罩設計...........................................17 4-1-2 母模製作...........................................17 4-1-3 表面粗度儀量側光阻厚度................................19 4-1-4 翻模製作微混和器上蓋.................................20 4-1-5 微混合器上下蓋貼合與管線接合...........................20 4-2 實驗觀測...............................................20 4-2-1 工作流體與微量式注射幫浦...............................20 4-2-2 實驗影像擷取.........................................21 第五章 結果與討論.........................................22 5-1 簡介..............................................22 5-2 網格測試...........................................22 5-3 實驗與模擬結果之比較.................................23 5-4 最佳化流道之流動與混合情形............................24 5-4-1 雷諾數0.125、0.5及2的流動與混合現象...................24 5-4-2 雷諾數8的流動與混合現象...............................25 5-4-3 雷諾數32的流動與混合現象..............................26 5-4-4 雷諾數64的流動與混合現象..............................27 5-4-5 最佳化流道綜合討論...................................29 5-5 具週期性排列之矩形小翼對之排列方向對流動與混合效果的影響........30 5-6 矩形小翼對之幾何參數對流動與混合效能的影響...................34 5-6-1 主流道中心與矩形小翼對開口中心處的距離分別為0 Wm、0.167 Wm、0.25 Wm時,對流動、混合效能及壓降的影響........................34 5-6-2 矩形小翼對攻角分別為22.5o、45o、90o時,對流動、混合效能及壓降的影響.....................................................37 5-6-3 矩形小翼對高度分別為0.5H、0.75H、0.875H時,對流動、混合效能及壓降的影響.................................................40 5-6-4 矩形小翼對之縱向間距分別為1.25Wm、1.5Wm、1.75Wm時,對流動、混合效能及壓降的影響...........................................43 第六章 結論與未來展望......................................45 6-1 結論..................................................45 6-2 未來展望...............................................46 參考文獻...................................................47 附錄.....................................................166

    1. A. Manz, N. Graber, H. M. Widmer, “Miniaturized total
    chemical analysis system: a novel concept for chemical
    sensing,” Sensors and Actuators, B, Vol. 1, pp. 244-248,
    1990.
    2. I. Glasgow, N. Aubry, “Enhancement of microfluidic mixing
    using time pulsing,” Lab on a Chip, Vol. 3, pp.114-120,
    2003.
    3. J. –H. Tsai, L. Lin, “Active microfluidic mixer and gas
    bubble filter driven by thermal bubble micropump,”
    Sensors and Actuators A, Vol. 97-98, pp. 665-671, 2002.
    4. A. O. EI Moctar, N. Aubry, J. Batton, “Electro-
    hydrodynamic micro-fluidic mixer,” Lab on a Chip, Vol. 3,
    pp. 273-280,2003.
    5. J. Branebjerg, P. Gravesen, J. P. Krog, C. R. Nielsen,
    “Fast mixing by lamination,” in proceeding IEEE MEMS
    Workshop, San Diego, CA, pp. 441-446, 1996.
    6. T. Toftberg, M. Skolimowski, E. Andreassen, O. Geschke,
    “A novel passive micromixer: lamination in a planar
    channel system,” Microfluidics and Nanofluidics, Vol. 8,
    pp. 209-215, 2010.
    7. R. Yang, J. D. Williams, W. Wang, “A rapid micro-
    mixer/reactor based on arrays of spatially impinging
    micro-jets,” Journal of Micromechanics and
    Microengineering, Vol. 14, pp. 1345-1351, 2004.
    8. N. Aoki, K. Mae, “Effects of channel geometry on mixing
    performance of micromixers using collision segments,”
    Chemical Engineering Journal, Vol. 118, pp. 189-197, 2006.
    9. J. D. Tice, A. D. Lyon, R. F. Ismagilov, “Effects of
    viscosity on droplet formation and mixing in microfluidic
    channels,” Analytica Chimica Acta, Vol. 507, pp. 73-77,
    2004.
    10.K. Y. Tung, C. C. Li, J. T. Yang, “Mixing and
    hydrodynamic analysis of a droplet in a planar serpentine
    micromixer,” Microfluidics and Nanofluidics, Vol. 7, pp.
    545-557, 2009.
    11.P. B. Howell, Jr., D. R. Mott, J. P. Golden, F. S.
    Ligler, “Design and evaluation of a Dean vortex-based
    micromixer,” Lab on a Chip, Vol. 4, pp. 663-669, 2004.
    12.R. T. Tsai, C. Y. Wu, “An efficient micromixer based on
    multidirectional vortices due to baffles and channel
    curvature,” Biomicrofluidics, Vol. 5, pp. 1-13, 2011.
    13.R. T. Tsai, C. Y. Wu, “Multidirectional vortices mixing
    in three-stream micromixers with two inlets,” Microsystem
    Technologies, Vol. 18, pp. 779-786, 2012.
    14.X. Fu, S. Liu, X. Ruan, H. Yang, “Research on staggered
    oriented ridges static micromixers,” Sensors and
    Actuators, Vol. 114, pp. 618-624, 2006.
    15.A. A. S. Bhagat, E. T K Peterson, I. Papautsky, “A
    Passive planar micromixer with obstructions for mixing at
    low Reynolds numbers,” Journal of Micromechanics and
    Microengineering, Vol. 17, pp. 1017-1024, 2007.
    16.C. K. Chung, C. -Y. Wu, T. R. Shih, “Effect of baffle
    height and Reynolds number on fluid mixing,” Microsystem
    Technologies, Vol. 14, pp. 1317-1323, 2008.
    17.A. D. Strook, S. K. W. Dertinger, A. Ajdari, I. Mezic, H.
    A. Stone, G. M. Whitesides, “Chaotic mixer for
    microchannels,” Science, Vol. 295, pp. 647-651, 2002.
    18.A. D. Strook, S. K. Dertinger, G. M. Whitesides, A.
    Ajdari, “Patterning flows using grooved surfaces,”
    Analytical Chemistry, Vol. 74, pp. 5306-5312, 2002.
    19.林雨欣, “具溝槽之波紋形微混合器中的流體混合,” 國立成功大學機械工程研
    究所碩士論文, 2011.
    20.M. Fiebig, P. Kallwiet, N. Mitra, S. Tigglebeck, “Heat
    transfer enhancement and drag by longitudinal vortex
    generators in channel flow,” Experimental Thermal and
    Fluid Science, Vol. 4, pp. 103-114, 1991.
    21.S. Ferrouillat, P. Tochon, C. Garnier, H. Peerhossaini,
    “Intensification of heat-transfer and mixing in
    multifunctional heat exchangers by artificially generated
    streamwise vorticity,” Applied Thermal Engineering, Vol.
    26, pp. 1820-1829, 2006.
    22.J. S. Go, Y. –H. Cho, “Experimental evaluation of anodic
    bonding process based on the Taguchi analysis of
    interfacial fracture toughness,” Sensors and Actuators,
    Vol. 73, pp. 52-57, 1999.
    23.J. –T. Yang, K. –J. Huang, Y. –C. Lin, “Geometric effects
    on fluid mixing in passive grooved micromixers,” Lab on a
    Chip, Vol. 5, pp.1140-1147, 2008.
    24.C. K. Chung, T. R. Shih, T. C. Chen, B.H. Wu, “Mixing
    behavior of the rhombic micromixers over a wide Reynolds
    number range using Taguchi method and 3D numerical
    simulations,” Biomedical Microdevices, Vol. 10, pp 739-
    748, 2008.
    25.S. A. Rani, B. Pitts, P. S. Steward, “Rapid diffusion of
    fluorescent tracers into Staphylococcus epidermidis
    biofilms visualized by time lapse microscopy,”
    Antimicrobial Agents Chemotherapy, Vol. 49, pp. 728-732,
    2005.
    26.J. Boss, “Evaluation of the homogeneity degree of
    mixture,” Bulk Solids Handling, Vol. 6, pp.1207-1215,
    1986.

    下載圖示 校內:2017-07-19公開
    校外:2017-07-19公開
    QR CODE