| 研究生: |
林漢昇 Lin, Han-Sheng |
|---|---|
| 論文名稱: |
丙酮肟在銅(100)和氧/銅(100)表面的吸附與反應 Adsorption and Reactions of Acetone Oxime on Cu(100) and O/Cu(100) Surfaces |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 超高真空系統 、程序控溫反應/脫附 、反射-吸收紅外光譜 、X光光電子能譜 、銅(100) 、丙酮肟 |
| 外文關鍵詞: | ultra-high vacuum (UHV) system, temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), Cu(100), acetone oxime |
| 相關次數: | 點閱:351 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是以程序控溫反應/脫附(TPR/D)、反射-吸收紅外光譜(RAIRS)、X光光電子能譜(XPS)探討超高真空系統中丙酮肟(acetone oxime)、((CH3)2N–OH)於Cu(100)和O/Cu(100)表面的熱化學反應。
丙酮肟在Cu(100)表面上會分解形成水、氨氣、乙腈、氰化氫和氫氣,而多層與有些單層的丙酮肟分子分別在180 K與211 K脫附。O/Cu(100)表面上,丙酮肟的分解形成了水、乙腈、一氧化碳、二氧化碳、氰化氫和氫氣,而多層的丙酮肟分子於186 K脫附。RAIRS和XPS的結果指出丙酮肟分子在無O(ad)和有O(ad)環境下有不同的分解路徑。丙酮肟在Cu(100)表面是先在~300 K斷N–O鍵,形成(CH3)2CN(ad)中間物,並產生H2O脫附,而此中間物在高溫時會分解成NH3、CH3CN、HCN。在O/Cu(100)表面,預吸附的氧原子會先抓取丙酮肟上OH官能基的H,形成OH(ad)與(CH3)2C=N–O(ad)。OH(ad)基可結合而形成H2O脫附( ~200 K),(CH3)2C=N–O(ad)會斷N–O鍵,後續反應導致CO、CO2、CH3CN、HCN的脫附。
我們也以密度泛函理論計算來模擬丙酮肟在Cu(100)的鍵結情形,最穩定的吸附狀態是以氮原子去接觸銅表面的頂位。相對於單一自由分子,此吸附態的分子有較短的N–O鍵(約0.020 Å差異)與較長的O–H鍵(大了~0.025 Å)。
In this research, temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS) have been employed to investigate the thermal reactions of acetone oxime ((CH3)2N-OH) on Cu(100) and O/Cu(100) surfaces in an ultra-high vacuum chamber.
H2O, NH3, CH3CN, HCN and H2 are found to be the reaction products from acetone oxime decomposition on Cu(100). The acetone oxime desorption from the multilayers and the first adsorption layer occurs at 180 K and 211 K, respectively. H2O, CH3CN, CO, CO2, HCN and H2 are the reaction products found from the reaction of acetone oxime on O/Cu(100). The acetone oxime desorption from the multilayers occurs at 186 K. The results of RAIRS and XPS indicate that acetone oxime has different decomposition pathways in the absence and presence of O(ad). Acetone oxime on Cu(100) undergoes N-OH bond scission first approximately at 300 K to form (CH3)2CN(ad) and H2O. This intermediate further decomposes into NH3, CH3CN and HCN at higher temperatures. On the O/Cu(100) surface, the preadsorbed oxygen atom abstracts the H of the OH group in acetone oxime first, forming (CH3)2C=NO(ad) and OH(ad). Recombination of OH(ad) groups causes H2O desorption at ~200 K. Continuous reaction of the (CH3)2C=NO(ad) generates CO, CO2, CH3CN and HCN.
Moreover, we also performed density functional theory calculations to obtain the adsorption structure of acetone oxime on Cu(100), showing that it is bonded to an atop site via the N atom. The surface acetone oxime has a shorter N-O bond (Δd ~ 0.020 Å) and a longer O-H bond (Δd ~ 0.025 Å), as compared to those of a free acetone oxime molecule.
1. Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. II. Liquids. J. Am. Chem. Soc. 1917, 39, 9, 1848–1906.
2. Christmann, K.; Ertl, G.; Pignet T. Adsorption of Hydrogen on a Pt (111) Surface. Surf. Sci. 1973, 54, 365-392.
3. Shank, J. B. “What Exactly Was Torricelli’s ‘Barometer?’” SpringerLink 2012.
4. O’Hanlon, J. F. A User’s Guide to Vacuum Technology, 3rd Edition. John Wiley & Sons 2003.
5. Wei, Y.; Kamy, S.; Tadeusz, W. P. Modeling Gas Adsorption in Marcellus Shale With Langmuir and BET Isotherms. SPE J. 2016, 21, 589-600.
6. Arthur, L. The Beckmann Rearrangement. J. Am. Chem. Soc. 1924, 46, 6, 1477-1483.
7. Ige, O. M.; Okesola, A. O. Comparative Efficacy and Safety of Cefixime and Ciprofloxacin in the Management of Adults With Community-Acquired Pneumonia in Ibadan, Nigeria. Ann Ib Postgrad Med. 2015, 13, 72-78.
8. Collins, J.; Xiao, Z.; Müllner, M.; Connal, L. The Emergence of Oxime Click Chemistry and its Utility in Polymer Science. Polym. Chem. 2016, 7, 3812-3826.
9. Elliott, J. A. W.; Ward, C. A. Temperature Programmed Desorption: A Statistical Rate Theory Approach. J. Chem. Phys. 1997, 106, 5677-5684.
10. Vickerman, J. C. Surface Analysis-the Principle Techniques, 2nd Edition. Wiley & Sons, 2009.
11. Wu, S. M.; Chiang, C. M. 表面科學方法研究異相催化反應機制. 科學新知. 33, 100.8
12. Redhead, P. A. Thermal Desorption of Gases. Vacuum 1962, 12, 203-211.
13. King, D. Thermal Desorption from Metal Surfaces: A Review. Surf. Sci. 1975, 47, 394-402
14. Sexton, B. A. Surface Vibrations of Adsorbed Intermediates in the Reaction of Alcohols with Cu(100). Surf. Sci. 1979, 88, 299-318.
15. Ghosh, J.; Bhuin, R. G.; Vishwakarma, G.; Pradeep, T. Formation of Cubic Ice via Clathrate Hydrate, Prepared in Ultrahigh Vacuum under Cryogenic Conditions. J. Phys. Chem. Lett. 2020, 11, 1, 26-32.
16. Jason, E.; Jeffrey, T. Interaction of Acetonitrile with the Surfaces of Amorphous and Crystalline Ice. Langmuir. 1999, 15, 21, 7232-7237.
17. Jhuang, J. Y.; Lee, S. H.; Chen, S. W.; Chen, Y. H.; Chen, Y. J.; Lin, J. L. Adsorption and Reaction Pathways of 1H-Pyrazole on Cu(100) and O/Cu(100). J. Phys. Chem. C 2018, 122, 6195-6208.
18. Lin, J. L.; Ye, C. H.; Lin, B. C.; Li, S. H.; Yang, Z. X.; Chiang, Y. H.; Chen, S. W. Thermal Reaction of 2,4-Dibromopyridine on Cu(100). Phys. Chem. C 2015, 119, 26471-26480.
19. Chen, S. W.; Chen, Y. J.; Chen, Y. H.; Chen, G. J.; Chan, S. H.; Lin, J. L. Adsorption and Reaction Pathways of 1H-1,2,3-Triazole on Cu(100) and O/Cu(100). J. Phys. Chem. C 2018, 122, 27412-27424.
20. Chen, S. W.; Chao, P. Y.; Chen, G. J.; Chan, S. H.; Chang, L. C.; Lee, S. S.; Lin, J. L. Adsorption and Reactions of 3-Bromopyridine and 2-Bromopyridine on Cu(100) and O/Cu(100). J. Phys. Chem. C 2020, 124, 6078-6089.
21. Li, L.; Yang, L.; Li, F. Synthesis of 1-(2-Hydroxyphenyl) Dec-2-en-1-One Oxime and Its Flotation and Adsorption Behavior for Malachite. Front. Chem. 2020, 8, 592771.
22. Zhen, W.; Yuan, X.; Ning, X.; Gong, X.; Xue, C. Building Oxime-Ni2+ Complex on Polymeric Carbon Nitride: Molecular-Level Design of Highly Efficient Hydrogen Generation Photocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 868-876.
23. Sueyoshi, T.; Sasaki, T.; Iwasawa, Y. Oxygen Atoms on Cu(100) Formed at 100 K, Active for CO Oxidation and Water-Hydrogen Abstraction, Characterized by HREELS and TPD J. Phys. Chem. B 1997, 101, 4648-4655.
24. Hagman, B. Structure and Reactivity of Surface Oxides on Cu(100). 2016.
25. Sexton, B. A.; Hughes, A. E. A Comparison of Weak Molecular Adsorption of Organic Molecules on Clean Copper and Platinum Surfaces. Surf. Sci. 1984, 140, 227-248.
26. Wockel, C.; Eilert, A.; Welke, M.; Schoppke, M.; Steinruck, H. P.; Denecke, R. Pyridine on Flat Pt(111) and Stepped Pt(355)-An in situ HRXPS Investigation of Adsoption and Thermal Evolution. J. Chem. Phys. 2016, 144, 014702.
27. Herceg, E.; Kumudu, M. Reversible Hydrogenation of Surface N Atoms To Form NH on Pt(111). J. Phys. Chem. B 2005, 109, 2828-2835.
28. Ksenija, B. S.; Corina, L.; Norman, H.; Andrew, B.; Andreas, L. Inhibitive Properties and Surface Morphology of a Group of Heterocyclic Diazoles as Inhibitors for Acidic Iron Corrosion. Langmuir. 2005, 26, 12187-96.
29. Chen, Y. J.; You, Z. J.; Lee, S. S.; Chang, L. C.; Lin, H. S.; Liu, Y. F.; Liu, Y. X.; Lin, J. L. Comparison of Adsoption and Reactions of Pyrrole on Cu(100) and O/Cu(100). Appl. Surf. Sci. 2021, 121787.
校內:2026-09-07公開