| 研究生: |
黃文奎 Huang, Wen-Kuei |
|---|---|
| 論文名稱: |
使用以盒形圖為基礎的分數階灰預測模型進行新產品之短期需求預測 Employing Box-Plot based Fractional Grey Models for Forecasting New Product Short Demands |
| 指導教授: |
利德江
Li, Der-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 新產品需求預測 、短期時間序列資料 、灰預測模型 、分數階灰預測模型 、盒形圖 |
| 外文關鍵詞: | Demand forecast of new product, short-term time series, grey models, fractional grey model, box-plot |
| 相關次數: | 點閱:146 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
企業投注新產品開發之成本高昂,使用下游廠商或終端使用者的需求預測做為決斷參考是一可行之策。然此種短期時間序列資料有其學習困難性,在過往的方法中,分數階灰預測模式(fractional grey model, FGM) 已被證實其透過分數累加方式,較傳統的整數累加方式的GM模型有更佳的準確率,然而如何決定適度的分數階值,許多文獻以不同最佳化演算法進行;除分數階值外,如何設定適當的分數階背景值,以進一步地提高其預測準確率,亦值得探究。本研究使用盒形圖,推估資料的發生趨勢,並將此與FGM結合,稱為盒形圖為基礎的分數階灰預測模型(box-plot based FGM, BFGM)。實驗部分,以某知名的設備商為研究對象,透過其生產之商品屬性與公開測試資料來進行效果驗證,經實驗結果顯示,BFGM比FGM有更佳的預測結果。
The cost of investing in new product development is high, and it is a feasible way to use demand forecasts from customer or end-users as a decisive reference. However, this short-term time series data has its learning difficulties. In the past, the fractional grey prediction model (fractional grey model, FGM) has been proved that its cumulative method is better than the traditional integer cumulative of grey model (GM) model. There are many researches using different optimal algorithms to determine the moderate score order. And how to set the coefficient sets of α in grey model is also worth exploring. Therefore, this research reveals a new grey model which used box plot to estimate the trend of data and combined this with FGM, known as the box-plot-based fractional scale prediction model (box-plot-based FGM, BFGM) to improve the accuracy of predictors by setting the coefficient sets of α in traditional grey model. In the experimental, the examined dataset that collected from a well-known equipment manufacturer as the research object. The result verified the effect through the commodity attributes and public test data of its production, and the experimental results show that BFGM has better prediction results than FGM.
【中文部分】
陳盈融(2017). 運用德爾菲法探討巨量資料分析成功之影響因素-以全民健保資料 庫為例. (碩士), 國立中正大學, 嘉義縣.
陳秋恭(2004). 應用模糊類神經網路於穿刺結構之動態訊號分析. (碩士), 國立成功 大學, 台南市.
楊志平(2003). 灰預測、指數平滑法與預測組合之應用─以台灣地區鮮食鳳梨產地 價格為例. (碩士), 國立屏東科技大學, 屏東縣.
【英文部分】
Akay, D., and Atak, M. (2007). Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32(9), 1670–1675.
An, X., Jiang, D., Zhao, M. and Liu, C., (2012). Short-time prediction of wind power using EMD and chaotic theory. Communications in Nonlinear Science and Numerical Simulation 17 (2), 1036–1042
Chen, C.I., Chen, H.L. and Chen, S.P., (2008). Forecasting of foreign exchange rates of Taiwan’s major trading partners by novel nonlinear Grey Bernoulli model NGBM(1,1). Communications in Nonlinear Science and Numerical Simulation 13(6), 1194–1204.
Chen, L.H. and Guo, T.Y., (2011). Forecasting financial crises for an enterprise by using the Grey Markov forecasting model. Quality & Quantity 45, 911–22.
Cheng, K. H., and Shah, H. C., (1999). A new method for earthquake forecasting using gery theory: Application to California. The Journal of Grey System, 11(3), 293-302.
Dang, Y., Liu, S.F. and Chen, K., (2004). The GM models that x(n) be taken as initial value. Kybernetes 33(2), 247–254.
Deng, J.L., (1989). Introduction Grey system theory. Journal of Grey System 1(1), 1–24.
Gene, H.Golub, Charles, F.Van Loan. Matrix computations (3rd ed.). The Johns Hopkins University Press, Baltimore and London;1996. p. 242.
Kayacan, E. and Kaynak, O., (2011) Single-step ahead prediction based on the principle of concatenation using Grey predictors. Expert Systems with Applications 38(8):9499–9505.
Kayacan, E., Ulutas, B. and Kaynak, O., (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications 37(2), 1784–9.
Kumar, U. and Jain, V.K., (2010). Time series model(Grey–Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 35(4):1709–16.
Lee, Y.S., Tong, L.I., (2011). Forecasting energy consumption using a Grey model improved by incorporating genetic programming. Energy Conversion and Management 52(3), 147–152.
Li, D.C., Chang, C.J., Chen, C.C, and Chen, W.C. (2012). Forecasting short-term electricity consumption using the adaptive Grey-based approach-an Asian case. Omega 40(6), 767–773.
Li, T.L., (2012). A research on the Grey prediction model GM(1,n). Applied Mathematics and Computation 218(9):4903–4916.
Li, X., (2012). Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Communications in Nonlinear Science and Numerical Simulation 17(10), 3934–3946.
Lin, B, Gao F, Wang, M, Xiong, Y, and Li, A, (2018). A Parameter Estimation of Fractional Order Grey Model Based on Adaptive Dynamic Cat Swarm Optimization. Proceedings of 2018 3rd International Conference on Computational Modeling, Simulation and Applied Mathematics (CMSAM 2018), vol. 2, Wuhan University of Technology, Wuhan, China, 2018
Lin, C.S., Liou, F.M. and Huang, C.P. (2011). Grey forecasting model for CO2 emissions: a Taiwan study. Applied Energy 88(11), 3816–3820.
Lin, C.T, and Yang, S.Y. (2003). Forecast of the output value of Taiwan’s opto-electronics industry using the Grey forecasting model. Technol Forecasting Social Change;70, 177–86.
Liu, H.X. and Zhang, D.L., (2012). Analysis and prediction of hazard risks caused by tropical cyclones in Southern China with fuzzy mathematical and Grey models. Applications in Mathematical Modelling 36, 626–637.
Liu, S.F. and Lin, Y., (2010). Grey systems: theory and applications. London: Springer-Verlag London Ltd.;.
Luo, Y.X., (2010). Non-equidistant step by step optimum new information GM(1,1) and its application. Systems Engineering - Theory & Practice 30(4), 2254–2258.
Stenly, T., Yang, B.S., (2011). Application of Grey model for machine degradation prognostics. Journal of Mechanical Science and Technology; 25(12), 2979–2985.
Wang, S.J., Wang, W.L., Huang, C.T. and Chen, S.C., (2011). Improving inventory effectiveness in RFIF-enabled global supply chain with Grey forecasting model. The Journal of Strategic Information Systems 20(3), 307–322.
Wang, Y., Dang, Y., Li, Y. and Liu, S.F., (2010). An approach to increase prediction precision of GM(1,1) model based on optimization of the initial condition. Expert Systems with Applications 37(8), 5640–5644.
Wang, Y., Yu, C., Tu, R. and Zhang, Y.M., (2011). Fire detection model in Tibet based on Grey-fuzzy neural network algorithm. Expert Systems with Applications 38(8):9580–9586.
Wang, Y. F., (2003). On-demand forecasting of stock prices using a real-time predictor. IEEE Transactions on Knowledge and Data Engineering, 15(4), 1033-1037.
Wang, Y., Song, Q. B., MacDonell, S., Shepperd, M., & Shen, J. Y., (2009). Integrate the GM(1,1) and Verhulst Models to Predict Software Stage Effort. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 39(6), 647-658.
Wu, L., Liu, S., Yao, L., Yan, S., Liu, D.., (2013). Grey system model with the fractional order accumulation. Communications in Nonlinear Science and Numerical Simulation 18(7), 1775-1785.
Xie, N.M. and Liu, S.F., (2009). Discrete Grey forecasting model and its optimization. Applied Mathematical Modelling 33(2), 1173–1186.
Yao, T.X., Liu S.F. and Xie, N.M., (2009). On the properties of small sample of GM(1,1) model. Applied Mathematical Modelling 33(4), 1894–1903.
Zhang, Y., Xu Y. and Wang, Z., (2009). GM(1,1) Grey prediction of Lorenz chaotic system. Chaos, Solitons & Fractals 42(2), 1003–1009.
Zhao, Z., Wang, J., Zhao, J. and Su, Z., (2012). Using a Grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China. Omega 40(5), 525–532.
校內:2025-08-01公開