| 研究生: |
陳世軒 Chen, Shih-Hsuan |
|---|---|
| 論文名稱: |
實驗上實現多光子糾纏及特徵化其應用在量子資訊處理上所展現之量子過程能力 Experimental Realization of Multi-photon Entanglement and the Quantum Process Capability Characterization of its Applications to Quantum Information Processing |
| 指導教授: |
李哲明
Li, Che-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 219 |
| 中文關鍵詞: | 多光子糾纏 、量子過程能力 、單向量子計算 、量子隱形傳態 、裝置無關量子密鑰傳輸 |
| 外文關鍵詞: | Multi-photon entanglement, Quantum process capability, One-way quantum computation, Quantum teleportation, Device-independent quantum key distribution |
| 相關次數: | 點閱:57 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子資訊處理為新興量子技術提供了新的可能,如量子計算和量子通訊等。在各種量子資訊處理任務中,量子糾纏是一種重要的物理資源,應用於遠端狀態準備、到量子隱形傳態、量子密鑰分發、單向量子計算等任務。 上述任務的執行很大程度取決於糾纏的品質。 因此,識別糾纏是檢查量子資訊過程可信度的重要一環。
為了確保任務中涉及的關鍵程序或過程在量子狀態下可靠地執行,量子力學中的過程因其不尋常的特性和潛在的應用而引起了人們的極大興趣。 在量子物理學基礎領域,人們對識別無法用古典物理學描述的過程有著濃厚的興趣。 這些過程的識別有助於檢視量子力學是否可以描述觀察到的現象背後的基本原理。
本論文記錄了我們如何在實驗上實現六光子糾纏,以演示如何定量識別量子動力學過程並評估多個量子資訊處理任務中動態過程的量子力學特徵。 在我們的實驗中,透過兩種不同的實驗設置中透過超快脈衝雷射激發自發參數下轉換(SPDC)產生糾纏光子對,產生的糾纏對的保真度分別為0.94和0.92。 然後,我們將兩對偏振糾纏光子對中的一個光子在偏振分束器上干涉,以產生四光子和六光子糾纏態。 我們透過產生的多體糾纏態演示非古典遠程狀態準備和單向量子計算的非古典能力。 在論文的最後一部分,我將總結應用多體糾纏態在量子資訊處理任務中透過量子過程所展現各種量子力學效應。
Quantum information processing provides a new paradigm for the emerging generation of quantum technologies, such as quantum computation band quantum communication, and in a variety of quantum-information processing tasks, quantum entanglement is an important physical resource, from remote state preparation to quantum teleportation, and quantum key distribution to one-way quantum computing. The performance of above tasks is critically dependent on the quality of entanglement. Thus, identifying entanglement is an essential component in examining the faithfulness of quantum-information processes.
For the need to ensure whether key procedures or processes involved in the task are reliably performed in the quantum regime, physical processes in quantum mechanics attract considerable interest on account of their unusual characteristics and potential applications. In the field of the foundations of quantum physics, there is strong interest in identifying processes that cannot be explained using classical physics. The identification of such processes helps clarify whether quantum mechanics can describe the rationale behind observed phenomena.
This dissertation documents how we experimentally implement and characterize six-photon entanglement to demonstrate how to quantitative identify quantum dynamical processes and to evaluate the prescribed quantum-mechanical features of a dynamical process in several quantum information processing tasks. In our experiments, the photon pairs are produced by spontaneous parametric down-conversion (SPDC) process pumped by ultrafast optical pulses in two different experimental setting, and the fidelity of generated entangled pairs are respectively 0.94 and 0.99. We then lead one photon of the two pairs of polarization-entangled photon pairs are interfered on the polarizing beam splitter to generate four-photon and six-photon entangled states. We further demonstrate non-classical remote state preparation and non-classical capability of one-way quantum computation via the generated multipartite entangled states. In the last part of the dissertation, I will conclude the application of multipartite entangled states on demonstrating kinds of quantum-mechanic effect via quantum processes in quantum information processing tasks.
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge Univ. Press, 2000.
[2] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” nature, vol. 464, no. 7285, pp. 45–53, 2010.
[3] N. Gisin and R. Thew, “Quantum communication,” Nature photonics, vol. 1, no. 3, pp. 165–171, 2007.
[4] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Physical Review Letters, vol. 87, no. 7, p. 077902, 2001.
[5] N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization,” Physical review letters, vol. 94, no. 15, p. 150502, 2005.
[6] G.-B. Jo, Y. Shin, S. Will, T. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Long phase coherence time and number squeezing of two bose-einstein condensates on an atom chip,” Physical Review Letters, vol. 98, no. 3, p. 030407, 2007.
[7] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.
[8] X.-X. Xia, Q.-C. Sun, Q. Zhang, and J.-W. Pan, “Long distance quantum teleportation,” Quantum Science and Technology, vol. 3, no. 1, p. 014012, 2017.
[9] M. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. Itano, J. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, et al., “Deterministic quantum teleportation of atomic qubits,” Nature, vol. 429, no. 6993, pp. 737–739, 2004.
[10] J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, “Quantum teleportation between light and matter,” Nature, vol. 443, no. 7111, pp. 557–560, 2006.
[11] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, Aug 1991.
[12] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Deviceindependent security of quantum cryptography against collective attacks,” Phys. Rev. Lett., vol. 98, p. 230501, Jun 2007.
[13] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Reviews of modern physics, vol. 81, no. 3, p. 1301, 2009.
[14] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical review letters, vol. 86, no. 22, p. 5188, 2001.
[15] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A, vol. 68, no. 2, p. 022312, 2003.
[16] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature, vol. 434, no. 7030, pp. 169–176, 2005.
[17] D. Cavalcanti, P. Skrzypczyk, and I. Šupić, “All entangled states can demonstrate nonclassical teleportation,” Physical Review Letters, vol. 119, no. 11, p. 110501, 2017.
[18] K. Southwell, “Quantum coherence,” Nature, vol. 453, no. 7198, pp. 1003–1004, 2008.
[19] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Reviews of modern physics, vol. 81, no. 2, p. 865, 2009.
[20] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Physical review A, vol. 52, no. 5, p. 3457, 1995.
[21] G. Brennen, E. Giacobino, and C. Simon, “Focus on quantum memory,” New Journal of Physics, vol. 17, no. 5, p. 050201, 2015.
[22] M. Zukowski, A. Zeilinger, M. Horne, and A. Ekert, “” event-ready-detectors” bell experiment via entanglement swapping.,” Physical Review Letters, vol. 71, no. 26, 1993.
[23] T. Brandes, “Coherent and collective quantum optical effects in mesoscopic systems,” physics reports, vol. 408, no. 5-6, pp. 315–474, 2005.
[24] N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, “Quantum biology,” Nature Physics, vol. 9, no. 1, pp. 10–18, 2013.
[25] J. You and F. Nori, “Superconducting circuits and quantum information,” Physics today, vol. 58, no. 11, pp. 42–47, 2005.
[26] I. Buluta, S. Ashhab, and F. Nori, “Natural and artificial atoms for quantum computation,” Reports on Progress in Physics, vol. 74, no. 10, p. 104401, 2011.
[27] I. Buluta and F. Nori, “Quantum simulators,” Science, vol. 326, no. 5949, pp. 108–111, 2009.
[28] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Reviews of Modern Physics, vol. 86, no. 1, p. 153, 2014.
[29] J.-Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature, vol. 474, no. 7353, pp. 589–597, 2011.
[30] P. Nation, J. Johansson, M. Blencowe, and F. Nori, “Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits,” Reviews of Modern Physics, vol. 84, no. 1, p. 1, 2012.
[31] Z.-L. Xiang, S. Ashhab, J. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Reviews of Modern Physics, vol. 85, no. 2, p. 623, 2013.
[32] S. Shevchenko, A. Omelyanchouk, A. Zagoskin, S. Savel’Ev, and F. Nori, “Distinguishing quantum from classical oscillations in a driven phase qubit,” New Journal of Physics, vol. 10, no. 7, p. 073026, 2008.
[33] N. Lambert, C. Emary, Y.-N. Chen, and F. Nori, “Distinguishing quantum and classical transport through nanostructures,” Physical review letters, vol. 105, no. 17, p. 176801, 2010.
[34] A. Miranowicz, M. Bartkowiak, X. Wang, Y.-x. Liu, and F. Nori, “Testing nonclassicality in multimode fields: A unified derivation of classical inequalities,” Physical Review A, vol. 82, no. 1, p. 013824, 2010.
[35] M. Bartkowiak, A. Miranowicz, X. Wang, Y.-x. Liu, W. Leoński, and F. Nori, “Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses,” Physical Review A, vol. 83, no. 5, p. 053814, 2011.
[36] A. Miranowicz, K. Bartkiewicz, A. Pathak, J. Peřina Jr, Y.-N. Chen, and F. Nori, “Statistical mixtures of states can be more quantum than their superpositions: Comparison of nonclassicality measures for single-qubit states,” Physical Review A, vol. 91, no. 4, p. 042309, 2015.
[37] A. Miranowicz, K. Bartkiewicz, N. Lambert, Y.-N. Chen, and F. Nori, “Increasing relative nonclassicality quantified by standard entanglement potentials by dissipation and unbalanced beam splitting,” Physical Review A, vol. 92, no. 6, p. 062314, 2015.
[38] G. Milburn, Quantum Technology. Frontiers of science, Allen & Unwin, 1996.
[39] J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 361, no. 1809, pp. 1655–1674, 2003.
[40] J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics, vol. 3, no. 12, pp. 687–695, 2009.
[41] I. Georgescu and F. Nori, “Quantum technologies: an old new story,” Physics World, vol. 25, no. 05, p. 16, 2012.
[42] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179, 1984.
[43] S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, “Deviceindependent quantum key distribution secure against collective attacks,” New. J. Phys., vol. 11, p. 045021, apr 2009.
[44] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key distribution with realistic devices,” Rev. Mod. Phys., vol. 92, p. 025002, May 2020.
[45] E. T. Campbell, “Optimal entangling capacity of dynamical processes,” Physical Review A, vol. 82, no. 4, p. 042314, 2010.
[46] F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Reports on Progress in Physics, vol. 82, no. 1, p. 016001, 2018.
[47] A. M. Goebel, C. Wagenknecht, Q. Zhang, Y.-A. Chen, K. Chen, J. Schmiedmayer, and J.-W. Pan, “Multistage entanglement swapping,” Physical Review Letters, vol. 101, no. 8, p. 080403, 2008.
[48] Y. Mao, Y.-Z. Zhen, H. Liu, M. Zou, Q.-J. Tang, S.-J. Zhang, J. Wang, H. Liang, W. Zhang, H. Li, et al., “Experimentally verified approach to nonentanglementbreaking channel certification,” Physical Review Letters, vol. 124, no. 1, p. 010502, 2020.
[49] Y.-Z. Zhen, Y. Mao, K. Chen, F. Buscemi, and O. Dahlsten, “Unified approach to witness non-entanglement-breaking quantum channels,” Physical Review A, vol. 101, no. 6, p. 062301, 2020.
[50] L. Moravčíková and M. Ziman, “Entanglement-annihilating and entanglementbreaking channels,” Journal of Physics A: Mathematical and Theoretical, vol. 43, no. 27, p. 275306, 2010.
[51] G. Gour and A. Winter, “How to quantify a dynamical quantum resource,” Physical review letters, vol. 123, no. 15, p. 150401, 2019.
[52] Y. Liu and X. Yuan, “Operational resource theory of quantum channels,” Physical Review Research, vol. 2, no. 1, p. 012035, 2020.
[53] C.-Y. Hsieh, “Resource preservability,” Quantum, vol. 4, p. 244, 2020.
[54] G. Saxena, E. Chitambar, and G. Gour, “Dynamical resource theory of quantum coherence,” Physical Review Research, vol. 2, no. 2, p. 023298, 2020.
[55] D. Rosset, F. Buscemi, and Y.-C. Liang, “Resource theory of quantum memories and their faithful verification with minimal assumptions,” Physical Review X, vol. 8, no. 2, p. 021033, 2018.
[56] T. Theurer, D. Egloff, L. Zhang, and M. B. Plenio, “Quantifying operations with an application to coherence,” Physical review letters, vol. 122, no. 19, p. 190405, 2019.
[57] Z.-W. Liu and A. Winter, “Resource theories of quantum channels and the universal role of resource erasure,” arXiv preprint arXiv:1904.04201, 2019.
[58] R. Takagi, K. Wang, and M. Hayashi, “Application of the resource theory of channels to communication scenarios,” Physical Review Letters, vol. 124, no. 12, p. 120502, 2020.
[59] X. Yuan, Y. Liu, Q. Zhao, B. Regula, J. Thompson, and M. Gu, “Universal and operational benchmarking of quantum memories,” npj Quantum Information, vol. 7, no. 1, p. 108, 2021.
[60] R. Takagi and B. Regula, “General resource theories in quantum mechanics and beyond: operational characterization via discrimination tasks,” Physical Review X, vol. 9, no. 3, p. 031053, 2019.
[61] R. Uola, T. Kraft, and A. A. Abbott, “Quantification of quantum dynamics with inputoutput games,” Physical Review A, vol. 101, no. 5, p. 052306, 2020.
[62] E. Chitambar and G. Gour, “Quantum resource theories,” Reviews of modern physics, vol. 91, no. 2, p. 025001, 2019.
[63] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys., vol. 86, pp. 419–478, Apr 2014.
[64] C. Emary, N. Lambert, and F. Nori, “Leggett–garg inequalities,” Reports on Progress in Physics, vol. 77, no. 1, p. 016001, 2013.
[65] O. Gühne and G. Tóth, “Entanglement detection,” Physics Reports, vol. 474, no. 1-6, pp. 1–75, 2009.
[66] C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, and F. Nori, “Witnessing quantum coherence: from solid-state to biological systems,” Scientific reports, vol. 2, no. 1, p. 885, 2012.
[67] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Physical review letters, vol. 76, no. 5, p. 722, 1996.
[68] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nature photonics, vol. 9, no. 10, pp. 641–652, 2015.
[69] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.
[70] Q. Zhang, A. Goebel, C. Wagenknecht, Y.-A. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J.-W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nature Physics, vol. 2, no. 10, pp. 678–682, 2006.
[71] J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, et al., “Quantum teleportation and entanglement distribution over 100- kilometre free-space channels,” Nature, vol. 488, no. 7410, pp. 185–188, 2012.
[72] J.-G. Ren, P. Xu, H.-L. Yong, L. Zhang, S.-K. Liao, J. Yin, W.-Y. Liu, W.-Q. Cai, M. Yang, L. Li, et al., “Ground-to-satellite quantum teleportation,” Nature, vol. 549, no. 7670, pp. 70–73, 2017.
[73] Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and einstein-podolsky-rosen steering,” Physical Review Letters, vol. 115, no. 18, p. 180502, 2015.
[74] C.-Y. Chiu, N. Lambert, T.-L. Liao, F. Nori, and C.-M. Li, “No-cloning of quantum steering,” npj Quantum Inf., vol. 2, p. 16020, 2016.
[75] C. Branciard, N. Gisin, and S. Pironio, “Characterizing the nonlocal correlations created via entanglement swapping,” Physical review letters, vol. 104, no. 17, p. 170401, 2010.
[76] C. Branciard, D. Rosset, N. Gisin, and S. Pironio, “Bilocal versus nonbilocal correlations in entanglement-swapping experiments,” Physical Review A, vol. 85, no. 3, p. 032119, 2012.
[77] D. J. Saunders, A. J. Bennet, C. Branciard, and G. J. Pryde, “Experimental demonstration of nonbilocal quantum correlations,” Science advances, vol. 3, no. 4, p. e1602743, 2017.
[78] G. Carvacho, F. Andreoli, L. Santodonato, M. Bentivegna, R. Chaves, and F. Sciarrino, “Experimental violation of local causality in a quantum network,” Nature communications, vol. 8, no. 1, p. 14775, 2017.
[79] A. Tavakoli, P. Skrzypczyk, D. Cavalcanti, and A. Acín, “Nonlocal correlations in the star-network configuration,” Physical Review A, vol. 90, no. 6, p. 062109, 2014.
[80] D. Rosset, C. Branciard, T. J. Barnea, G. Pütz, N. Brunner, and N. Gisin, “Nonlinear bell inequalities tailored for quantum networks,” Physical review letters, vol. 116, no. 1, p. 010403, 2016.
[81] A. Tavakoli, “Bell-type inequalities for arbitrary noncyclic networks,” Physical Review A, vol. 93, no. 3, p. 030101, 2016.
[82] C. M. Lee and M. J. Hoban, “Towards device-independent information processing on general quantum networks,” Physical review letters, vol. 120, no. 2, p. 020504, 2018.
[83] S.-H. Chen, H. Lu, Q.-C. Sun, Q. Zhang, Y.-A. Chen, and C.-M. Li, “Discriminating quantum correlations with networking quantum teleportation,” Phys. Rev. Res., vol. 2, p. 013043, Jan 2020.
[84] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford Univ. Press, 2002.
[85] H. Lu, C.-Y. Huang, Z.-D. Li, X.-F. Yin, R. Zhang, T.-L. Liao, Y.-A. Chen, C.-M. Li, and J.-W. Pan, “Counting classical nodes in quantum networks,” Physical review letters, vol. 124, no. 18, p. 180503, 2020.
[86] K. Wei-Ting, “Experimental verification of genuine four-photon quantum steering using entanglement witness observables,” Master’s thesis, 2022.
[87] K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A., vol. 40, p. 2847(R), 1989.
[88] U. Leonhardt, Measuring the quantum state of light, vol. 22. Cambridge university press, 1997.
[89] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” J. Mod. Opt., vol. 44, no. 11-12, pp. 2455–2467, 1997.
[90] H.-P. Breuer and F. Petruccione, The theory of open quantum systems. Oxford University Press, USA, 2002.
[91] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, no. 24, p. 4337, 1995.
[92] M. H. Rubin, D. N. Klyshko, Y. Shih, and A. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Physical Review A, vol. 50, no. 6, p. 5122, 1994.
[93] P. SHUN, Towards a high quality polarization-entangled multi-photon source. PhD thesis, Department of Physics, National University of Singapore„ 2009.
[94] S. M. Lee, H. Kim, M. Cha, and H. S. Moon, “Polarization-entangled photon-pair source obtained via type-ii non-collinear spdc process with ppktp crystal,” Optics express, vol. 24, no. 3, pp. 2941–2953, 2016.
[95] M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in graph states,” Phys. Rev. A, vol. 69, p. 062311, Jun 2004.
[96] O. Gühne, C.-Y. Lu, W.-B. Gao, and J.-W. Pan, “Toolbox for entanglement detection and fidelity estimation,” Physical Review A, vol. 76, no. 3, p. 030305, 2007.
[97] W.-T. Kao, C.-Y. Huang, T.-J. Tsai, S.-H. Chen, S.-Y. Sun, Y.-C. Li, T.-L. Liao, C.-S. Chuu, H. Lu, and C.-M. Li, “Scalable quantum network determination with einsteinpodolsky- rosen steering,” arXiv preprint arXiv:2303.17771, 2023.
[98] H. Lu, C.-Y. Huang, Z.-D. Li, X.-F. Yin, R. Zhang, T.-L. Liao, Y.-A. Chen, C.-M. Li, and J.-W. Pan, “Counting classical nodes in quantum networks,” Phys. Rev. Lett., vol. 124, no. 18, p. 180503, 2020.
[99] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, no. 2, p. 777, 2012.
[100] J.-w. Pan and A. Zeilinger, “Greenberger-horne-zeilinger-state analyzer,” Physical Review A, vol. 57, no. 3, p. 2208, 1998.
[101] T. Kim, M. Fiorentino, and F. N. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Physical Review A, vol. 73, no. 1, p. 012316, 2006.
[102] Z. M. Chaisson, P. F. Poitras, M. Richard, Y. Castonguay-Page, P.-H. Glinel, V. Landry, and D. R. Hamel, “Phase-stable source of high-quality three-photon polarization entanglement by cascaded down-conversion,” Physical Review A, vol. 105, no. 6, p. 063705, 2022.
[103] D. F. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A, vol. 64, no. 5, p. 052312, 2001.
[104] C.-C. Kuo, S.-H. Chen, W.-T. Lee, H.-M. Chen, H. Lu, and C.-M. Li, “Quantum process capability,” Sci. Rep., vol. 9, no. 1, p. 20316, 2019.
[105] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pp. 284–289, 2004.
[106] K. C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3 – A MATLAB software package for semidefinite programming,” Optim. Methods Softw., vol. 11, pp. 545–581, 1999.
[107] A. Peres, “Separability criterion for density matrices,” Physical Review Letters, vol. 77, no. 8, p. 1413, 1996.
[108] P. Horodecki, “Separability criterion and inseparable mixed states with positive partial transposition,” Physics Letters A, vol. 232, no. 5, pp. 333–339, 1997.
[109] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Physical review letters, vol. 113, no. 14, p. 140401, 2014.
[110] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, and G. Adesso, “Robustness of coherence: an operational and observable measure of quantum coherence,” Physical review letters, vol. 116, no. 15, p. 150502, 2016.
[111] A. Winter and D. Yang, “Operational resource theory of coherence,” Physical review letters, vol. 116, no. 12, p. 120404, 2016.
[112] T. Theurer, N. Killoran, D. Egloff, and M. B. Plenio, “Resource theory of superposition,” Physical review letters, vol. 119, no. 23, p. 230401, 2017.
[113] P. A. M. Dirac, The principles of quantum mechanics. Oxford university press, 1981.
[114] H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Physical Review Letters, vol. 86, no. 5, p. 910, 2001.
[115] A. Peres, Quantum theory: concepts and methods, vol. 72. Springer, 1997.
[116] J. Yuen-Zhou, J. J. Krich, M. Mohseni, and A. Aspuru-Guzik, “Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy,” Proceedings of the National Academy of Sciences, vol. 108, no. 43, pp. 17615–17620, 2011.
[117] H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the einstein-podolsky-rosen paradox,” Physical review letters, vol. 98, no. 14, p. 140402, 2007.
[118] Q. Y. He and M. D. Reid, “Genuine multipartite einstein-podolsky-rosen steering,” Physical Review Letters, vol. 111, no. 25, p. 250403, 2013.
[119] C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine highorder einstein-podolsky-rosen steering,” Phys. Rev. Lett., vol. 115, no. 1, p. 010402, 2015.
[120] J.-H. Hsieh, S.-H. Chen, and C.-M. Li, “Quantifying quantum-mechanical processes,” Sci. Rep., vol. 7, no. 1, p. 13588, 2017.
[121] I. De Vega and D. Alonso, “Dynamics of non-markovian open quantum systems,” Reviews of Modern Physics, vol. 89, no. 1, p. 015001, 2017.
[122] V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Physical Review A, vol. 57, no. 3, p. 1619, 1998.
[123] M. B. Plenio and S. Virmani, “An introduction to entanglement measures.,” Quantum Inf. Comput., vol. 7, no. 1, pp. 1–51, 2007.
[124] T. Gonda and R. W. Spekkens, “Monotones in general resource theories,” arXiv preprint arXiv:1912.07085, 2019.
[125] D. Rosset, D. Schmid, and F. Buscemi, “Type-independent characterization of spacelike separated resources,” Physical Review Letters, vol. 125, no. 21, p. 210402, 2020.
[126] A. Jamiołkowski, “Linear transformations which preserve trace and positive semidefiniteness of operators,” Reports on Mathematical Physics, vol. 3, no. 4, pp. 275–278, 1972.
[127] M.-D. Choi, “Completely positive linear maps on complex matrices,” Linear Algebra Appl., vol. 10, p. 285, 1975.
[128] M. Jiang, S. Luo, and S. Fu, “Channel-state duality,” Physical Review A, vol. 87, no. 2, p. 022310, 2013.
[129] “Ibm q experience.” https://quantum-computing.ibm.com.
[130] M. J. Hall, J. D. Cresser, L. Li, and E. Andersson, “Canonical form of master equations and characterization of non-markovianity,” Physical Review A, vol. 89, no. 4, p. 042120, 2014.
[131] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, “Colloquium: Non-markovian dynamics in open quantum systems,” Reviews of Modern Physics, vol. 88, no. 2, p. 021002, 2016.
[132] H.-P. Breuer and F. Petruccione, The theory of open quantum systems. Oxford University Press, USA, 2002.
[133] G. Kimura, “The bloch vector for n-level systems,” Physics Letters A, vol. 314, no. 5-6, pp. 339–349, 2003.
[134] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Physical Review A, vol. 71, no. 6, p. 062310, 2005.
[135] H.-P. Breuer, E.-M. Laine, and J. Piilo, “Measure for the degree of non-markovian behavior of quantum processes in open systems,” Physical review letters, vol. 103, no. 21, p. 210401, 2009.
[136] Á. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-markovianity of quantum evolutions,” Physical review letters, vol. 105, no. 5, p. 050403, 2010.
[137] H.-B. Chen, J.-Y. Lien, G.-Y. Chen, and Y.-N. Chen, “Hierarchy of non-markovianity and k-divisibility phase diagram of quantum processes in open systems,” Physical Review A, vol. 92, no. 4, p. 042105, 2015.
[138] R. Fenna and B. Matthews, “Chlorophyll arrangement in a bacteriochlorophyll protein from chlorobium limicola,” Nature, vol. 258, no. 5536, pp. 573–577, 1975.
[139] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, no. 7137, pp. 782– 786, 2007.
[140] M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New Journal of Physics, vol. 10, no. 11, p. 113019, 2008.
[141] S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Physical review letters, vol. 74, no. 8, p. 1259, 1995.
[142] J. Lee and M. Kim, “Entanglement teleportation via werner states,” Physical review letters, vol. 84, no. 18, p. 4236, 2000.
[143] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Physical review letters, vol. 88, no. 12, p. 127902, 2002.
[144] L. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit systems,” Phys. Rev. A, vol. 82, p. 030301, Sep 2010.
[145] H. F. Hofmann, “Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations,” Physical review letters, vol. 94, no. 16, p. 160504, 2005.
[146] P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying einstein-podolskyrosen steering,” Physical review letters, vol. 112, no. 18, p. 180404, 2014.
[147] R. F. Werner, “Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model,” Physical Review A, vol. 40, no. 8, p. 4277, 1989.
[148] M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the einstein-podolsky-rosen paradox: from concepts to applications,” Reviews of Modern Physics, vol. 81, no. 4, p. 1727, 2009.
[149] D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on semidefinite programming,” Reports on Progress in Physics, vol. 80, no. 2, p. 024001, 2016.
[150] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond bell's theorem,” in Bell's theorem, quantum theory and conceptions of the universe, pp. 69–72, Springer, 1989.
[151] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, “Measurement-based quantum computation,” Nature Physics, vol. 5, no. 1, pp. 19– 26, 2009.
[152] Y.-N. Chen, C.-M. Li, N. Lambert, S.-L. Chen, Y. Ota, G.-Y. Chen, and F. Nori, “Temporal steering inequality,” Physical Review A, vol. 89, no. 3, p. 032112, 2014.
[153] C.-M. Li, Y.-N. Chen, N. Lambert, C.-Y. Chiu, and F. Nori, “Certifying single-system steering for quantum-information processing,” Physical Review A, vol. 92, no. 6, p. 062310, 2015.
[154] K. Bartkiewicz, A. Černoch, K. Lemr, A. Miranowicz, and F. Nori, “Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks,” Physical Review A, vol. 93, no. 6, p. 062345, 2016.
[155] C.-M. Li, H.-P. Lo, L.-Y. Chen, and A. Yabushita, “Experimental verification of multidimensional quantum steering,” Optics Communications, vol. 410, pp. 956–960, 2018.
[156] S.-L. Chen, N. Lambert, C.-M. Li, A. Miranowicz, Y.-N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Physical review letters, vol. 116, no. 2, p. 020503, 2016.
[157] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noiseassisted transport,” The Journal of Chemical Physics, vol. 131, no. 10, 2009.
[158] J. Adolphs and T. Renger, “How proteins trigger excitation energy transfer in the fmo complex of green sulfur bacteria,” Biophysical journal, vol. 91, no. 8, pp. 2778–2797, 2006.
[159] P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik, “Environmentassisted quantum transport,” New Journal of Physics, vol. 11, no. 3, p. 033003, 2009.
[160] M. M. Wilde, J. M. McCracken, and A. Mizel, “Could light harvesting complexes exhibit non-classical effects at room temperature?,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 466, no. 2117, pp. 1347– 1363, 2010.
[161] I. Bongioanni, L. Sansoni, F. Sciarrino, G. Vallone, and P. Mataloni, “Experimental quantum process tomography of non-trace-preserving maps,” Physical Review A, vol. 82, no. 4, p. 042307, 2010.
[162] G.-Y. Chen, N. Lambert, C.-M. Li, Y.-N. Chen, and F. Nori, “Rerouting excitation transfers in the fenna-matthews-olson complex,” Physical Review E, vol. 88, no. 3, p. 032120, 2013.
[163] L. G. Mourokh and F. Nori, “Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode,” Physical Review E, vol. 92, no. 5, p. 052720, 2015.
[164] G.-Y. Chen, N. Lambert, Y.-A. Shih, M.-H. Liu, Y.-N. Chen, and F. Nori, “Plasmonic bio-sensing for the fenna-matthews-olson complex,” Scientific reports, vol. 7, no. 1, p. 39720, 2017.
[165] R. P. Feynman and F. Vernon Jr, “The theory of a general quantum system interacting with a linear dissipative system,” Annals of physics, vol. 281, no. 1-2, pp. 547–607, 2000.
[166] F. Shibata, Y. Takahashi, and N. Hashitsume, “A generalized stochastic liouville equation. non-markovian versus memoryless master equations,” Journal of Statistical Physics, vol. 17, pp. 171–187, 1977.
[167] K. Kraus, A. Böhm, J. D. Dollard, and W. Wootters, States, Effects, and Operations Fundamental Notions of Quantum Theory: Lectures in Mathematical Physics at the University of Texas at Austin. Springer, 1983.
[168] Y.-N. Chen, G.-Y. Chen, Y.-Y. Liao, N. Lambert, and F. Nori, “Detecting nonmarkovian plasmonic band gaps in quantum dots using electron transport,” Physical Review B, vol. 79, no. 24, p. 245312, 2009.
[169] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori, “General nonmarkovian dynamics of open quantum systems,” Physical review letters, vol. 109, no. 17, p. 170402, 2012.
[170] X. Yin, J. Ma, X. Wang, and F. Nori, “Spin squeezing under non-markovian channels by the hierarchy equation method,” Physical Review A, vol. 86, no. 1, p. 012308, 2012.
[171] D. Chruściński and S. Maniscalco, “Degree of non-markovianity of quantum evolution,” Physical review letters, vol. 112, no. 12, p. 120404, 2014.
[172] H.-B. Chen, N. Lambert, Y.-C. Cheng, Y.-N. Chen, and F. Nori, “Using non-markovian measures to evaluate quantum master equations for photosynthesis,” Scientific reports, vol. 5, no. 1, p. 12753, 2015.
[173] H.-N. Xiong, P.-Y. Lo, W.-M. Zhang, D. H. Feng, and F. Nori, “Non-markovian complexity in the quantum-to-classical transition,” Scientific reports, vol. 5, no. 1, p. 13353, 2015.
[174] D. F. Urrego, J. Flórez, J. Svozilík, M. Nuñez, and A. Valencia, “Controlling nonmarkovian dynamics using a light-based structured environment,” Physical Review A, vol. 98, no. 5, p. 053862, 2018.
[175] H.-B. Chen, P.-Y. Lo, C. Gneiting, J. Bae, Y.-N. Chen, and F. Nori, “Quantifying the nonclassicality of pure dephasing,” Nature communications, vol. 10, no. 1, p. 3794, 2019.
[176] E.-M. Laine, J. Piilo, and H.-P. Breuer, “Measure for the non-markovianity of quantum processes,” Physical Review A, vol. 81, no. 6, p. 062115, 2010.
[177] S. Luo, S. Fu, and H. Song, “Quantifying non-markovianity via correlations,” Physical Review A, vol. 86, no. 4, p. 044101, 2012.
[178] H.-P. Breuer, “Foundations and measures of quantum non-markovianity,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 45, no. 15, p. 154001, 2012.
[179] Á. Rivas, S. F. Huelga, and M. B. Plenio, “Quantum non-markovianity: characterization, quantification and detection,” Reports on Progress in Physics, vol. 77, no. 9, p. 094001, 2014.
[180] G. Guarnieri, A. Smirne, and B. Vacchini, “Quantum regression theorem and nonmarkovianity of quantum dynamics,” Physical Review A, vol. 90, no. 2, p. 022110, 2014.
[181] C.-F. Li, G.-C. Guo, and J. Piilo, “Non-markovian quantum dynamics: What does it mean?,” Europhysics Letters, vol. 127, no. 5, p. 50001, 2019.
[182] K.-D. Wu, Z. Hou, G.-Y. Xiang, C.-F. Li, G.-C. Guo, D. Dong, and F. Nori, “Detecting non-markovianity via quantified coherence: theory and experiments,” npj Quantum Information, vol. 6, no. 1, p. 55, 2020.
[183] X.-M. Lu, X. Wang, and C. Sun, “Quantum fisher information flow and nonmarkovian processes of open systems,” Physical Review A, vol. 82, no. 4, p. 042103, 2010.
[184] S. Lorenzo, F. Plastina, and M. Paternostro, “Geometrical characterization of nonmarkovianity,” Physical Review A, vol. 88, no. 2, p. 020102, 2013.
[185] G. Torre, W. Roga, and F. Illuminati, “Non-markovianity of gaussian channels,” Physical Review Letters, vol. 115, no. 7, p. 070401, 2015.
[186] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, “Experimental control of the transition from markovian to non-markovian dynamics of open quantum systems,” Nature Physics, vol. 7, no. 12, pp. 931–934, 2011.
[187] B.-H. Liu, D.-Y. Cao, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, “Photonic realization of nonlocal memory effects and non-markovian quantum probes,” Scientific reports, vol. 3, no. 1, p. 1781, 2013.
[188] E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li, and G.-C. Guo, “Nonlocal memory effects in the dynamics of open quantum systems,” Physical review letters, vol. 108, no. 21, p. 210402, 2012.
[189] G. Lindblad, “On the generators of quantum dynamical semigroups,” Communications in Mathematical Physics, vol. 48, pp. 119–130, 1976.
[190] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of n-level systems,” Journal of Mathematical Physics, vol. 17, no. 5, pp. 821–825, 1976.
[191] C.-C. Kuo, S.-H. Chen, W.-T. Lee, H.-M. Chen, H. Lu, and C.-M. Li, “Quantum process capability,” Scientific reports, vol. 9, no. 1, p. 20316, 2019.
[192] K.-H. Wang, S.-H. Chen, Y.-C. Lin, and C.-M. Li, “Non-markovianity of photon dynamics in a birefringent crystal,” Physical Review A, vol. 98, no. 4, p. 043850, 2018.
[193] B. Regula, R. Takagi, and M. Gu, “Operational applications of the diamond norm and related measures in quantifying the non-physicality of quantum maps,” Quantum, vol. 5, p. 522, 2021.
[194] B. M. Terhal and G. Burkard, “Fault-tolerant quantum computation for local nonmarkovian noise,” Physical Review A, vol. 71, no. 1, p. 012336, 2005.
[195] D. Aharonov, A. Kitaev, and J. Preskill, “Fault-tolerant quantum computation with long-range correlated noise,” Physical review letters, vol. 96, no. 5, p. 050504, 2006.
[196] S. L. Braunstein and A. Mann, “Measurement of the bell operator and quantum teleportation,” Physical Review A, vol. 51, no. 3, p. R1727, 1995.
[197] M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature, vol. 396, no. 6706, pp. 52–55, 1998.
[198] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” science, vol. 282, no. 5389, pp. 706– 709, 1998.
[199] C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” nature, vol. 404, no. 6775, pp. 247–255, 2000.
[200] C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science, vol. 339, no. 6124, pp. 1164–1169, 2013.
[201] M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: an outlook,” Science, vol. 339, no. 6124, pp. 1169–1174, 2013.
[202] J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio, “Optimal local implementation of nonlocal quantum gates,” Physical Review A, vol. 62, no. 5, p. 052317, 2000.
[203] L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Distributed quantum computation based on small quantum registers,” Physical Review A, vol. 76, no. 6, p. 062323, 2007.
[204] D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature, vol. 402, no. 6760, pp. 390–393, 1999.
[205] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. Devoret, L. Jiang, and R. Schoelkopf, “Deterministic teleportation of a quantum gate between two logical qubits,” Nature, vol. 561, no. 7723, pp. 368–373, 2018.
[206] A. Pirker, J. Wallnöfer, and W. Dür, “Modular architectures for quantum networks,” New Journal of Physics, vol. 20, no. 5, p. 053054, 2018.
[207] S. Popescu, “Teleportation versus bell’s inequalities. what is nonlocality?,” Physical Review Letters, vol. 72, p. 797, 1994.
[208] P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, “Local environment can enhance fidelity of quantum teleportation,” Physical Review A, vol. 62, no. 1, p. 012311, 2000.
[209] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Physical review letters, vol. 84, no. 12, p. 2722, 2000.
[210] F. Verstraete and H. Verschelde, “Optimal teleportation with a mixed state of two qubits,” Physical review letters, vol. 90, no. 9, p. 097901, 2003.
[211] D. Buono, G. Nocerino, A. Porzio, and S. Solimeno, “Experimental analysis of decoherence in continuous-variable bipartite systems,” Physical Review A, vol. 86, no. 4, p. 042308, 2012.
[212] G. Carvacho, F. Andreoli, L. Santodonato, M. Bentivegna, V. D'Ambrosio, P. Skrzypczyk, I. Šupić, D. Cavalcanti, and F. Sciarrino, “Experimental study of non- classical teleportation beyond average fidelity,” Physical Review Letters, vol. 121, no. 14, p. 140501, 2018.
[213] N.-N. Huang, J.-C. Xu, and C.-M. Li, “Device-independent quantum computing,” in Quantum 2.0, pp. QTu8B–11, Optica Publishing Group, 2020.
[214] X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, et al., “Quantum teleportation over 143 kilometres using active feed-forward,” Nature, vol. 489, no. 7415, pp. 269–273, 2012.
[215] X.-H. Bao, X.-F. Xu, C.-M. Li, Z.-S. Yuan, C.-Y. Lu, and J.-W. Pan, “Quantum teleportation between remote atomic-ensemble quantum memories,” Proceedings of the National Academy of Sciences, vol. 109, no. 50, pp. 20347–20351, 2012.
[216] S. Olmschenk, D. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science, vol. 323, no. 5913, pp. 486–489, 2009.
[217] L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang, C. Eichler, G. Puebla-Hellmann, A. Fedorov, and A. Wallraff, “Deterministic quantum teleportation with feed-forward in a solid state system,” Nature, vol. 500, no. 7462, pp. 319– 322, 2013.
[218] W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J. Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, et al., “Unconditional quantum teleportation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014.
[219] S. Takeda, T. Mizuta, M. Fuwa, P. Van Loock, and A. Furusawa, “Deterministic quantum teleportation of photonic quantum bits by a hybrid technique,” Nature, vol. 500, no. 7462, pp. 315–318, 2013.
[220] M. Horodecki, P. Horodecki, and R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation,” Physical Review A, vol. 60, no. 3, p. 1888, 1999.
[221] I. Šupić, P. Skrzypczyk, and D. Cavalcanti, “Methods to estimate entanglement in teleportation experiments,” Physical Review A, vol. 99, no. 3, p. 032334, 2019.
[222] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Physical Review A, vol. 65, no. 3, p. 032314, 2002.
[223] M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of einstein-podolsky-rosen steering,” Physical review letters, vol. 114, no. 6, p. 060404, 2015.
[224] R. Gallego and L. Aolita, “Resource theory of steering,” Physical Review X, vol. 5, no. 4, p. 041008, 2015.
[225] R. Uola, A. C. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” Reviews of Modern Physics, vol. 92, no. 1, p. 015001, 2020.
[226] Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, et al., “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nature Photonics, vol. 10, no. 10, pp. 671–675, 2016.
[227] M. Riebe, M. Chwalla, J. Benhelm, H. Häffner, W. Hänsel, C. Roos, and R. Blatt, “Quantum teleportation with atoms: quantum process tomography,” New Journal of Physics, vol. 9, no. 7, p. 211, 2007.
[228] C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, “Efficient teleportation between remote single-atom quantum memories,” Physical review letters, vol. 110, no. 14, p. 140403, 2013.
[229] F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, et al., “Quantum teleportation from a telecomwavelength photon to a solid-state quantum memory,” Nature Photonics, vol. 8, no. 10, pp. 775–778, 2014.
[230] X.-L. Wang, X.-D. Cai, Z.-E. Su, M.-C. Chen, D. Wu, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “Quantum teleportation of multiple degrees of freedom of a single photon,” Nature, vol. 518, no. 7540, pp. 516–519, 2015.
[231] Y.-H. Luo, H.-S. Zhong, M. Erhard, X.-L. Wang, L.-C. Peng, M. Krenn, X. Jiang, L. Li, N.-L. Liu, C.-Y. Lu, et al., “Quantum teleportation in high dimensions,” Physical review letters, vol. 123, no. 7, p. 070505, 2019.
[232] X.-M. Hu, C. Zhang, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Experimental multi-level quantum teleportation,” arXiv e-prints, pp. arXiv–1904, 2019.
[233] J. Von Neumann, Mathematical foundations of quantum mechanics: New edition, vol. 53. Princeton university press, 2018.
[234] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nature physics, vol. 3, no. 2, pp. 91–95, 2007.
[235] A. K. Pati, “Minimum classical bit for remote preparation and measurement of a qubit,” Physical Review A, vol. 63, no. 1, p. 014302, 2000.
[236] E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New Journal of Physics, vol. 6, no. 1, p. 100, 2004.
[237] C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurementdevice- independent quantum key distribution,” New Journal of Physics, vol. 16, no. 4, p. 043005, 2014.
[238] M. Gündoğan, J. S. Sidhu, V. Henderson, L. Mazzarella, J. Wolters, D. K. Oi, and M. Krutzik, “Proposal for space-borne quantum memories for global quantum networking,” npj Quantum Information, vol. 7, no. 1, p. 128, 2021.
[239] J. Wallnöfer, F. Hahn, M. Gündoğan, J. S. Sidhu, F. Wiesner, N. Walk, J. Eisert, and J. Wolters, “Simulating quantum repeater strategies for multiple satellites,” Communications Physics, vol. 5, no. 1, p. 169, 2022.
[240] M. Gündoǧan, J. S. Sidhu, M. Krutzik, and D. K. Oi, “Time-delayed single satellite quantum repeater node for global quantum communications,” Optica Quantum, vol. 2, no. 3, pp. 140–147, 2024.
[241] C. Gustiani and D. P. DiVincenzo, “Blind three-qubit exact grover search on a nitrogenvacancy- center platform,” Physical Review A, vol. 104, no. 6, p. 062422, 2021.
[242] J. You, X.-b. Wang, T. Tanamoto, and F. Nori, “Efficient one-step generation of large cluster states with solid-state circuits,” Physical Review A, vol. 75, no. 5, p. 052319, 2007.
[243] T. Tanamoto, Y.-x. Liu, X. Hu, and F. Nori, “Efficient quantum circuits for one-way quantum computing,” Physical review letters, vol. 102, no. 10, p. 100501, 2009.
[244] H. Wang, C.-P. Yang, and F. Nori, “Robust and scalable optical one-way quantum computation,” Physical Review A, vol. 81, no. 5, p. 052332, 2010.
[245] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.
[246] M. Gündoğan, T. Jennewein, F. K. Asadi, E. Da Ros, E. Sağlamyürek, D. Oblak, T. Vogl, D. Rieländer, J. Sidhu, S. Grandi, et al., “Topical white paper: a case for quantum memories in space,” arXiv preprint arXiv:2111.09595, 2021.
[247] C. D. Colquhoun, H. Jeffrey, S. Greenland, S. Mohapatra, C. Aitken, M. Cebecauer, C. Crawshaw, K. Jeffrey, T. Jeffreys, P. Karagiannakis, et al., “Responsive operations for key services (roks): a modular, low swap quantum communications payload,” arXiv preprint arXiv:2210.11285, 2022.
[248] T. Islam, J. S. Sidhu, B. L. Higgins, T. Brougham, T. Vergoossen, D. K. Oi, T. Jennewein, and A. Ling, “Finite resource performance of small satellite-based quantum key distribution missions,” arXiv preprint arXiv:2204.12509, 2022.
[249] J. S. Sidhu, T. Brougham, D. McArthur, R. G. Pousa, and D. K. Oi, “Key generation analysis for satellite quantum key distribution,” in Quantum Technology: Driving Commercialisation of an Enabling Science II, vol. 11881, p. 1188106, SPIE, 2021.
[250] J. Miguel-Ramiro, A. Pirker, and W. Dür, “Genuine quantum networks with superposed tasks and addressing,” npj Quantum Information, vol. 7, no. 1, p. 135, 2021.
[251] B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, et al., “Quantum discord as resource for remote state preparation,” Nature Physics, vol. 8, no. 9, pp. 666–670, 2012.
[252] B. Dakić, V. Vedral, and Č. Brukner, “Necessary and sufficient condition for nonzero quantum discord,” Physical review letters, vol. 105, no. 19, p. 190502, 2010.
[253] S. Luo and S. Fu, “Geometric measure of quantum discord,” Physical Review A, vol. 82, no. 3, p. 034302, 2010.
[254] N. Killoran, D. N. Biggerstaff, R. Kaltenbaek, K. J. Resch, and N. Lütkenhaus, “Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states,” Physical Review A, vol. 81, no. 1, p. 012334, 2010.
[255] H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Physical review letters, vol. 88, no. 1, p. 017901, 2001.
[256] W. H. Zurek, “Einselection and decoherence from an information theory perspective,” Annalen der Physik, vol. 512, no. 11-12, pp. 855–864, 2000.
[257] L. Henderson and V. Vedral, “Classical, quantum and total correlations,” Journal of physics A: mathematical and general, vol. 34, no. 35, p. 6899, 2001.
[258] A. Cabello, “N-particle n-level singlet states: some properties and applications,” Physical review letters, vol. 89, no. 10, p. 100402, 2002.
[259] K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, and J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett., vol. 99, no. 12, p. 120503, 2007.
[260] C.-K. Chen, S.-H. Chen, N.-N. Huang, and C.-M. Li, “Identifying genuine quantum teleportation,” Physical Review A, vol. 104, no. 5, p. 052429, 2021.
[261] A. Belenchia, M. Carlesso, Ö. Bayraktar, D. Dequal, I. Derkach, G. Gasbarri, W. Herr, Y. L. Li, M. Rademacher, J. Sidhu, et al., “Quantum physics in space,” Physics Reports, vol. 951, pp. 1–70, 2022.
[262] B. Bell, M. Tame, A. S. Clark, R. Nock, W. Wadsworth, and J. G. Rarity, “Experimental characterization of universal one-way quantum computing,” New J. Phys., vol. 15, no. 5, p. 053030, 2013.
[263] R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feedforward,” Nature, vol. 445, no. 7123, pp. 65–69, 2007.
[264] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” in 2009 50th annual IEEE symposium on foundations of computer science, pp. 517– 526, IEEE, 2009.
[265] J. F. Fitzsimons, “Private quantum computation: an introduction to blind quantum computing and related protocols,” npj Quantum Inf., vol. 3, no. 1, p. 23, 2017.
[266] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” science, vol. 335, no. 6066, pp. 303– 308, 2012.
[267] Q. Xu, X. Tan, R. Huang, and M. Li, “Verification of blind quantum computation with entanglement witnesses,” Phys. Rev. A, vol. 104, no. 4, p. 042412, 2021.
[268] C. Huang, T. Huang, Q. Lin, and K. Wei, “Blinding quantum computation using alternative sources,” Phys. Rev. A, vol. 104, no. 1, p. 012614, 2021.
[269] S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, “Experimental verification of quantum computation,” Nature physics, vol. 9, no. 11, pp. 727–731, 2013.
[270] T. Morimae and K. Fujii, “Blind quantum computation protocol in which alice only makes measurements,” Phys. Rev. A, vol. 87, no. 5, p. 050301, 2013.
[271] T. Morimae, “Verification for measurement-only blind quantum computing,” Phys. Rev. A, vol. 89, no. 6, p. 060302, 2014.
[272] C. Greganti, M.-C. Roehsner, S. Barz, T. Morimae, and P. Walther, “Demonstration of measurement-only blind quantum computing,” New J. Phys., vol. 18, no. 1, p. 013020, 2016.
[273] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008.
[274] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012.
[275] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A, vol. 89, no. 2, p. 022317, 2014.
[276] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, et al., “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, no. 6314, pp. 847–850, 2016.
[277] P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018.
[278] Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W. Yang, H. Liu, M.- Y. Zheng, X.-P. Xie, et al., “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020.
[279] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017.
[280] J. Kaniewski, “Analytic and nearly optimal self-testing bounds for the clauser-horneshimony- holt and mermin inequalities,” Phys. Rev. Lett., vol. 117, no. 7, p. 070402, 2016.
[281] F. Baccari, R. Augusiak, I. Šupić, J. Tura, and A. Acín, “Scalable bell inequalities for qubit graph states and robust self-testing,” Phys. Rev. Lett., vol. 124, no. 2, p. 020402, 2020.
[282] I. W. Primaatmaja, K. T. Goh, E. Y.-Z. Tan, J. T.-F. Khoo, S. Ghorai, and C. C.-W. Lim, “Security of device-independent quantum key distribution protocols: a review,” Quantum, vol. 7, p. 932, Mar. 2023.
[283] V. Zapatero, T. van Leent, R. Arnon-Friedman, W.-Z. Liu, Q. Zhang, H. Weinfurter, and M. Curty, “Advances in device-independent quantum key distribution,” npj Quantum Inf, vol. 9, p. 10, 2023.
[284] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–2467, 1997.
[285] G. Murta, S. B. van Dam, J. Ribeiro, R. Hanson, and S. Wehner, “Towards a realization of device-independent quantum key distribution,” Quantum Sci. Technol., vol. 4, p. 035011, jul 2019.
[286] M. Iqbal, L. Velasco, M. Ruiz, A. Napoli, J. Pedro, and N. Costa, “Quantum bit retransmission using universal quantum copying machine,” in 2022 International Conference on Optical Network Design and Modeling (ONDM), pp. 1–3, 2022.
[287] V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, “Quantum cloning,” Rev. Mod. Phys., vol. 77, pp. 1225–1256, Nov 2005.
[288] A. Ferenczi and N. Lütkenhaus, “Symmetries in quantum key distribution and the connection between optimal attacks and optimal cloning,” Phys. Rev. A, vol. 85, p. 052310, May 2012.
[289] I. Devetak and A.Winter, “Distillation of secret key and entanglement from quantum states,” Proc. R. Soc. A, vol. 461, p. 207, 2005.
[290] A. Acín, S. Massar, and S. Pironio, “Efficient quantum key distribution secure against no-signalling eavesdroppers,” New J. Phys., vol. 8, p. 126, aug 2006.
[291] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett., vol. 23, pp. 880–884, Oct 1969.
[292] R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick, “Practical deviceindependent quantum cryptography via entropy accumulation,” Nat. Commun., vol. 9, p. 459, 2018.
[293] M. Tomamichel and A. Leverrier, “A largely self-contained and complete security proof for quantum key distribution,” Quantum, vol. 1, p. 14, jul 2017.
[294] W.-Z. Liu, Y.-Z. Zhang, Y.-Z. Zhen, M.-H. Li, Y. Liu, J. Fan, F. Xu, Q. Zhang, and J.-W. Pan, “Toward a photonic demonstration of device-independent quantum key distribution,” Phys. Rev. Lett., vol. 129, p. 050502, Jul 2022.
[295] N.-N. Huang, J.-C. Xu, and C.-M. Li, “Device-independent quantum computing,” in OSA Quantum 2.0 Conference, p. QTu8B.11, Optica Publishing Group, 2020.
[296] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “Onesided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A, vol. 85, p. 010301, Jan 2012.
[297] R. Bhatia, Matrix Analysis. Springer International Publishing, Springer, 1997.
[298] M. Tomamichel, Quantum Information Processing with Finite Resources. Springer International Publishing, Springer, 2016.
[299] H. Lu, C. Liu, D.-S. Wang, L.-K. Chen, Z.-D. Li, X.-C. Yao, L. Li, N.-L. Liu, C.- Z. Peng, B. C. Sanders, et al., “Experimental quantum channel simulation,” Physical Review A, vol. 95, no. 4, p. 042310, 2017.
[300] A. Royer, “Reduced dynamics with initial correlations, and time-dependent environment and hamiltonians,” Physical review letters, vol. 77, no. 16, p. 3272, 1996.
[301] A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature, vol. 540, no. 7632, pp. 213–219, 2016.
[302] J. Carrasquilla and R. G. Melko, “Machine learning phases of matter,” Nature Physics, vol. 13, no. 5, pp. 431–434, 2017.
[303] J. R. Johansson, N. Lambert, I. Mahboob, H. Yamaguchi, and F. Nori, “Entangledstate generation and bell inequality violations in nanomechanical resonators,” Physical Review B, vol. 90, no. 17, p. 174307, 2014.
[304] S. Kurdziałek, W. Gorecki, F. Albarelli, and R. Demkowicz-Dobrzański, “Using adaptiveness and causal superpositions against noise in quantum metrology,” Physical Review Letters, vol. 131, no. 9, p. 090801, 2023.
[305] J. Fiurášek, “Continuous-variable quantum process tomography with squeezed-state probes,” Physical Review A, vol. 92, no. 2, p. 022101, 2015.
[306] Y.-D. Wu and G. Chiribella, “Detecting quantum capacities of continuous-variable quantum channels,” Physical Review Research, vol. 4, no. 4, p. 043149, 2022.
[307] E. Meyer-Scott, N. Prasannan, I. Dhand, C. Eigner, V. Quiring, S. Barkhofen, B. Brecht, M. B. Plenio, and C. Silberhorn, “Scalable generation of multiphoton entangled states by active feed-forward and multiplexing,” Physical Review Letters, vol. 129, no. 15, p. 150501, 2022.
[308] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008.
[309] M. Caleffi, A. S. Cacciapuoti, and G. Bianchi, “Quantum internet: From communication to distributed computing!,” in Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1–4, 2018.
[310] C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. Higgins, Z. Yan, C. Pugh, J.-P. Bourgoin, R. Prevedel, L. Shalm, et al., “Experimental three-photon quantum nonlocality under strict locality conditions,” Nature photonics, vol. 8, no. 4, pp. 292–296, 2014.
[311] J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent ultrafast measurement of time-bin encoded photons,” Physical Review Letters, vol. 111, no. 15, p. 153602, 2013.
[312] Y.-B. Sheng and L. Zhou, “Deterministic polarization entanglement purification using time-bin entanglement,” Laser Physics Letters, vol. 11, no. 8, p. 085203, 2014.
[313] Y. Pilnyak, P. Zilber, L. Cohen, and H. S. Eisenberg, “Quantum tomography of photon states encoded in polarization and picosecond time bins,” Physical Review A, vol. 100, no. 4, p. 043826, 2019.
[314] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, et al., “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, no. 7447, pp. 86–90, 2013.
[315] F. Dupuis, O. Fawzi, and S. Wehner, “Entanglement sampling and applications,” IEEE Transactions on Information Theory, vol. 61, no. 2, pp. 1093–1112, 2014.
[316] T. R. Tan, J. P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D. Leibfried, and D. J. Wineland, “Multi-element logic gates for trapped-ion qubits,” Nature, vol. 528, no. 7582, pp. 380–383, 2015.
[317] K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum repeaters,” Nat. Commun., vol. 6, no. 1, p. 6787, 2015.