簡易檢索 / 詳目顯示

研究生: 張湘淇
Chang, Shiang-Chi
論文名稱: 利用雙向演進式結構最佳化法設計二維聲子晶體之帶隙
The Optimization of Band Gap in Two-dimensional Phononic Crystals using Bi-directional Evolutionary Structural Optimization Method
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 102
中文關鍵詞: 聲子帶隙晶體雙向演進式結構最佳化法有限元素法頻帶結構拓樸最佳化
外文關鍵詞: phononic bandgap crystals, bidirectional evolutionary structural optimization method, finite element method, band structures, topology optimization
相關次數: 點閱:72下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究基於組合雙向演進式結構最佳化法及有限元素法的優化算法,對由兩種不同的固體材料組成之正方形晶格排列的二維聲子晶體進行拓樸最佳化,建立了完整的聲子晶體分析和優化流程,分別針對出平面波 (out-of-plane waves)和平面波(in-plane waves)計算頻帶結構,透過最佳化流程找出兩相鄰能帶之間具有寬頻且低頻能帶的週期結構,再將結果與文獻做比對。先驗證程式正確性,再進行參數分析。
    在拓樸最佳化方面,考慮由環氧樹脂-金組成的聲子晶體對出平面波及平面波進行能帶最大化分析,且迭代歷程最後會收斂。並分析在最佳化時,出平面波及平面波分析會遇到的問題,及解決辦法。
    在參數分析方面,利用不同材料組合進行最佳化,找到出平面波及平面波各頻帶間具有較大目標函數之參考拓樸形狀。並透過改變材料性質分析能帶大小及中心頻率的改變,使用不銹鋼作為材料2,材料1之性質為材料2的倍數比例,且材料1之密度及剛性皆小於材料2,如當固定材料2性質,調整材料1之密度時,可使能帶寬度及中心頻率變大,調整材料1之剛性時,可使能帶寬度及中心頻率變小,而同時調整材料1之密度及剛性時,則會使能帶寬度變大且中心頻率變低,進而達到調控能帶大小及中心頻率高低的能力。

    This study was based on an optimization algorithm that combined the bidirectional evolutionary structural optimization (BESO) method and finite element method. It aimed to topologically optimize a two-dimensional phononic crystal with a square lattice arrangement composed of two distinct solid materials. A comprehensive analysis and optimization process for phononic crystals were established. Band structures were separately calculated for out-of-plane waves and in-plane waves. Through the optimization process, periodic structures with wide and low-frequency bands between adjacent energy bands were identified. The results were then compared with existing literature. The correctness of the program was validated first, followed by parameter analysis.
    In terms of topological optimization, band gap maximize analysis of out-of-plane waves and in-plane waves considering a phononic crystal composed of epoxy and gold, with the iterative process eventually converging. The study also addressed the problems encountered during the optimization of these wave types and provided solutions.
    Regarding parameter analysis, different material combinations were optimized to find reference topological shapes with larger objective functions among various frequency bands for out-of-plane waves and in-plane waves. And analyze the change of energy band size and center frequency by changing the material properties. Using steel as material 2, the property of material 1 is a multiple ratio of material 2, and the density and stiffness of material 1 are smaller than material 2, such as fixing material 2's properties and adjusting material 1's density, the band width and central frequency could be increased. Similarly, changing material 1's rigidity reduced both. Simultaneously adjusting both density and rigidity of material 1 increased the band width and lowered the central frequency, thereby achieving the ability to control band size and central frequency.

    摘要 I Abstract II 誌謝 XVII 目錄 XVIII 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 聲子晶體 2 1.2.2 拓樸最佳化 3 1.3 動機與目的 4 1.4 本文架構 5 第二章 基本理論與分析方法 7 2.1 聲子晶體基本理論 7 2.1.1 倒晶格(Reciprocal lattice) 7 I. 倒晶格定義 7 II. 第一布里淵區(Brillouin zone) 9 2.1.2 布洛赫定理(Bloch’s theorem) 10 2.1.3 聲子晶體能帶數值分析 10 2.2 雙向演進式結構最佳化法基本理論 13 2.2.1 材料插值 13 2.2.2 靈敏度分析 14 I. 靈敏度計算 14 II. 靈敏度修正 15 III. 周圍濾波 16 IV. 平均靈敏度 17 2.2.3 體積演化過程 17 I. 模式A 18 II. 模式B 18 2.2.4 收斂準則 19 第三章 聲子晶體能隙最佳化設計結果與討論 24 3.1 出平面波 26 3.1.1 出平面波材料參數設置 26 3.1.2 出平面波最佳化結果與討論 29 3.2 平面波 31 3.2.1 平面波材料參數設置 31 3.2.2 平面波最佳化結果與討論 33 3.3 本章小結論 34 第四章 參數分析 55 4.1 使用不同材料組合解決局部最佳解問題的方法 55 4.1.1 出平面波分析結果 56 4.1.2 出平面波各頻帶間具較大目標函數之參考拓樸形狀 56 4.1.3 平面波分析結果及參考拓樸形狀 57 4.2 改變材料參數對目標函數之影響 58 第五章 結論與未來展望 98 5.1 結論 98 5.1.1 拓樸最佳化結果 98 5.1.2 參數分析 98 5.2 未來展望 99 參考文獻 100

    [1] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, vol. 58, no. 20, pp. 2059-2062, 1987.
    [2] M. M. Sigalas and E. N. Economou, "Elastic and acoustic wave band structure," Journal of Sound and Vibration, vol. 158, no. 2, pp. 377-382, 1992.
    [3] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites," Physical Review Letters, vol. 71, no. 13, pp. 2022-2025, 1993.
    [4] M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, "Theory of acoustic band structure of periodic elastic composites," Physical Review B, vol. 49, no. 4, pp. 2313-2322, 1994.
    [5] M. S. Kushwaha, "Classical band structure of periodic elastic composites," International Journal of Modern Physics B, vol. 10, no. 09, pp. 977-1094, 1996.
    [6] Y.-H. Liu, C. C. Chang, R.-L. Chern, and C. C. Chang, "Phononic band gaps of elastic periodic structures: A homogenization theory study," Physical Review B, vol. 75, no. 5, 2007.
    [7] J.-C. Hsu and T.-T. Wu, "Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates," Physical Review B, vol. 74, no. 14, 2006.
    [8] Z. Hou and B. M. Assouar, "Modeling of lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method," Physics Letters A, vol. 372, no. 12, pp. 2091-2097, 2008.
    [9] B. Bonello, C. Charles, and F. Ganot, "Lamb waves in plates covered by a two-dimensional phononic film," Applied Physics Letters, vol. 90, no. 2, 2007.
    [10] O. Sigmund, "A 99 line topology optimization code written in Matlab," Structural and Multidisciplinary Optimization, vol. 21, no. 2, pp. 120-127, 2001.
    [11] R. T. Bonnecaze, G. J. Rodin, O. Sigmund, and J. Søndergaard Jensen, "Systematic design of phononic band–gap materials and structures by topology optimization," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 361, no. 1806, pp. 1001-1019, 2003.
    [12] M. Y. Wang, X. Wang, and D. Guo, "A level set method for structural topology optimization," Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 1, pp. 227-246, 2003.
    [13] M. P. Bendsøe and O. Sigmund, Topology Optimization_Theory, Methods, and Applications. Springer Berlin, Heidelberg, pp. XIV, 370, 2004.
    [14] Y. M. Xie and G. P. Steven, "A simple evolutionary procedure for structural optimization," Computers & Structures, vol. 49, no. 5, pp. 885-896, 1993.
    [15] Y. M. Xie and G. P. Steven, EvolutionaryStructuralOptimiza. Springer, London, pp. XII, 188, 1997.
    [16] X. Huang and Y. M. Xie, "Optimal design of periodic structures using evolutionary topology optimization," Structural and Multidisciplinary Optimization, vol. 36, no. 6, pp. 597-606, 2007.
    [17] O. M. Querin, G. P. Steven, and Y. M. Xie, "Evolutionary structural optimisation (ESO) using a bidirectional algorithm," Engineering Computations, vol. 15, no. 8, pp. 1031-1048, 1998.
    [18] X. Y. Yang, Y. M. Xie, G. P. Steven, and O. M. Querin, "Bidirectional Evolutionary Method for Stiffness Optimization," American Institute of Aeronautics and Astronautics, vol. 37, no. 11, pp. 1483-1488, 1999.
    [19] O. M. Querin, V. Young, G. P. Steven, and Y. M. Xie, "Computational efficiency and validation of bi-directional evolutionary structural optimisation," Computer Methods in Applied Mechanics and Engineering, vol. 189, no. 2, pp. 559-573, 2000.
    [20] X. Huang, Z. H. Zuo, and Y. M. Xie, "Evolutionary topological optimization of vibrating continuum structures for natural frequencies," Computers & Structures, vol. 88, no. 5-6, pp. 357-364, 2010.
    [21] Y. f. Li, X. Huang, F. Meng, and S. W. Zhou, "Topology optimization of 2D phononic band gap crystals based on BESO methods," Paper presented at the 11th World Congress on Structural and Multidisciplinary Optimisation, Sydney, Australia, 2015, June 7-12.
    [22] Y. f. Li, X. Huang, F. Meng, and S. Zhou, "Evolutionary topological design for phononic band gap crystals," Structural and Multidisciplinary Optimization, vol. 54, no. 3, pp. 595-617, 2016.
    [23] A. P. Seyranian, E. Lund, and N. Olhoff, "Multiple eigenvalues in structural optimization problems," Structural optimization, vol. 8, no. 4, pp. 207-227, 1994.
    [24] N. L. Pedersen and A. K. Nielsen, "Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling," Structural and Multidisciplinary Optimization, vol. 25, no. 5-6, pp. 436-445, 2003.
    [25] J. S. Jensen and N. L. Pedersen, "On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases," Journal of Sound and Vibration, vol. 289, no. 4-5, pp. 967-986, 2006.
    [26] H.-W. Dong, X.-X. Su, Y.-S. Wang, and C. Zhang, "Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm," Structural and Multidisciplinary Optimization, vol. 50, no. 4, pp. 593-604, 2014.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE