簡易檢索 / 詳目顯示

研究生: 趙荃敏
Chao, Chuan-Min
論文名稱: 利用大地測量及PSInSAR技術探討鳳山斷層之運動特性
Surface Creeping Analysis of the Fengshan Fault in SW Taiwan from GPS observations and PSInSAR
指導教授: 饒瑞鈞
Rau, Ruey-Juin
共同指導教授: 景國恩
Ching, Kuo-En
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: GPSPSInSARMLVLOS鳳山斷層水準速度剖面潛移斷層鎖定斷層
外文關鍵詞: GPS, PSInSAR, MLV, LOS, Fengshan fault, Leveling, Velocity profile, Creeping fault, Locked fault
相關次數: 點閱:115下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 潛移斷層可透過持續潛移來釋放斷層面上能量,且潛移斷層之通過將造成鄰近建物與財產之持續破壞,因此我們需要對潛移斷層活動性進行分析,做為往後都市規畫之參考。過去的研究工作指出,位於台灣西南部平原區北起台南南邊至高屏交界處有一西北–東南走向的鳳山斷層,具有約15 mm/yr之左移分量,但由於野外調查工作並沒有發現確切之地質證據來確實鳳山斷層之存在與活動,故於地調所2010年的活動斷層版本中被移除。為了了解鳳山斷層之存在與其活動性,本研究使用GPS點狀資料與PSInSAR之面狀觀測資料進行分析,推估鳳山斷層更可靠之地表位置與影響區域及其影響量。本研究分析2002年至2015年之GPS連續站與移動站量測資料共223站,以Bernese v.5.0解算得到相對於穩定大陸測站金門站(KMNM)每日座標解,並以最小二乘法求得各站速度;本研究也採用內政部一等二等衛星控制點、三等加密控制點於1997年公告之TWD97座標與2010年公告之TWD97[2010]座標之成果共63點,求其座標差平均速度。在PSInSAR方面,本研究採用ALOS PALSAR於2007 至 2011年間總共17張雷達影像,求解衛星視線(LOS)平均速度;同時將藉由2006 - 2011年屏東平原南側147個水準點之垂直速度,評估地層下陷對該區LOS速度的影響量。從GPS所得之水平速度場將鳳山斷層北中南分成三段剖面,在有最明顯的速度落差之中段區,跨斷層速度變化在平行斷層分量上約為12.6 mm/yr,而垂直斷層走向分量的速度落差約為2.6 mm/yr,垂直速度跨斷層的落差約為4.1 mm/yr;而斷層北段之平行斷層分量約為14.3 mm/yr,垂直斷層走向分量的速度落差約為3.5 mm/yr;南段則在平行斷層分量上約為17.4 mm/yr,垂直斷層走向分量的速度落差約為3.6 mm/yr;然而相較於中段在鳳山斷層北段與南段因為GPS連續站點位分布不足,無法藉由GPS明確判斷斷層之運動行為,然可從平行斷層之速度分布確認鳳山斷層為左移之走向滑移斷層,略帶伸張分量;其中,北段更由於點位不足無法得跨斷層的垂直速度落差。而從PSInSAR所求得之LOS速度場觀測結果顯示,在鳳山區至屏東崁頂有較穩定明顯的速度落差。本研究將利用精密水準資料移除研究區域的高程影響,以得到水平項對於LOS方向的速度影響,成果顯示斷層北段接近鎖定狀態,中段與南段則為斷層潛移。近期位於高雄鳥松與屏東萬丹的兩處泥火山噴發,其座落位置與噴發裂隙與鳳山斷層地表位置走向相互呼應,沿線也正為斷層中段潛移最顯確之處,使泥貫入體以壓力較小之裂隙作為噴發路徑等地質特性,與鳳山斷層為走向滑移略帶伸張分量之特性相為呼應。整體而言,鳳山斷層自楠梓至佳冬全長約41 km,為左移潛移斷層,左移分量約15 mm/yr等斷層特性與前人研究相符,北段近地表有鎖定情形;未來針對國土開發與其上線型國家建設維護如台88等應納入位移變型考量。也期待未來能使PSInSAR的監測資料更確切模擬出鳳山斷層的斷層型態及能量累積、釋放等狀況,對斷層活動監測可以有更進一步的掌握。

    SUMMARY
    The Fengshan fault is proposed as an active creeping fault accompany with locked behavior in this study. We adopted the geodetic data, including GPS, precise leveling, and ALOS SAR images to analyze the fault surface movements. The GPS and precise leveling measurements provide discrete 3D surface velocities and the PSInSAR has dense Line-of-sight (LOS) velocities across the Fengshan fault. From the analysis of velocity profiles, the Fengshan fault is a left-lateral strike-slip fault in about 15 mm/yr and lengthening of about 3 mm/yr. This fault is creeping in the middle and southern segments. The northern segment of the fault is probably locked in about 1.5 km width. The locations of mud volcanos in the Niaosong, Kaoshung and the Wandan, Pingtung, are consistent with the fault trace of the Fengshan fault well and are proposed as the geological evidence of this fault.

    Key words: Fengshan fault, GPS, Leveling, PSInSAR, Creeping fault, Locked fault

    INTRODUCTION
    Previous studies based on GPS observations have found that the Fengshan fault may be a major active structure with surface creeping in southwestern Taiwan. The Long-term GPS measurements have shown that velocities at the western side of the Fengshan fault are faster than those at the eastern side. However there were no historic earthquakes along this fault and no geologic evidence besides geomorphic features to confirm whether the Fengshan fault is exist. Thus, the geometry and activity of the Fengshan fault are important but remain unclear. Once geologists in 19s had proposed Fengshan transfer fault zone (FTFZ) by the high resolution DEM and also geomorphological interpretation. And 2007 and 2013 Ching and Lee had used GPS velocities to prove the Fengshan fault may be creeping and exercising as a left-lateral, strike-slip fault. The SW Taiwan mainly covered with sediment bedding, which makes it hard to analyze the feature, property or behavior. On the other hand, there are also few uncertain faults makes this area even more complicate. But how it acts will make great impacts on the national constructions and public properties whether earthquakes or slow surface deformations. Thus, it’s necessary to evaluate the potential activities of Fengshan fault.
    METHODOLOGY & DATA
    It should be considered about that there are several N20°- 40°E faults at SW Taiwan in the study area and also the Fengshan fault southern part overlapping the Pingtung plain southern part where undergoes strong land subsidence due to groundwater pumping. On the aims of proper investigation, there are 56 continuous GPS stations (mainly from CWB), 167 campaign mode GPS (from CGS and NLSC) stations used in SW Taiwan in study area and 483 leveling points (from CGS and MOI) for the horizontal and vertical displacements detecting. Therefore, precise leveling data can provide good constraints associated with the land subsidence. The velocities can be derived from the position measurements. The Fengshan fault can be analyzed by separated in three segments from north to south and derive the fault-parallel and fault-perpendicular velocities from horizontal velocity field and leveling for vertical velocities. To provide better spatial coverage of the data distribution, we apply the Synthetic Aperture Radar (SAR) image of ALOS ascending data to analysis the Fengshan fault. The vertical impact can be removed from the leveling data by integrating the data sets. Then the variety velocities show the fault properties and giving us more insights into the behavior analyzing of the Fangshan fault.
    RESULTS & DISCUSSION
    On the northern, middle and southern segment, the fault parallel component has about 14.3 mm/yr, 12.6 mm/yr and 17.4 mm/yr difference across the fault, and the fault normal component has 3.5 mm/yr, 2.6 mm/yr and 3.6 mm/yr extension across the each segments. PSInSAR is helpful within the density of ground measurements. But it should still conscious about the patterns which might effects the final results of MLV (Mean Line-Of-Sight velocity). On the MLV field, one can see that the Chishan fault and the Lungchuan fault had played the role about 40 mm/yr to the LOS on the effect and so does the subsidence phenomenon on southern Pingtung plain. The two locations of mud-volcanos in Niaosong, Kaoshung and Wandan, Pingtung, lay around on the fault line which may consider as the geological evidence because the fault gap provides better structure for the volcanos releasing pressure.

    CONCLUSION
    The Fengshan fault is a strike-slip fault with left-lateral and extension component which can be proved by the long-term GPS surface deformation monitoring. The Fengshan fault is about 41 km from Nanzi, Kaohsiung to Chiatung, Pintung and creeping from the middle segment to southern segment, locked in the northern segment. The mud-volcanos at Niaosong and Wandan are almost corresponding to the creeping segment at the middle profile about 10 km distance between.

    目 錄 摘 要 I ABSTRACT III 致 謝 VI 目 錄 - 1 - 圖目錄 - 3 - 表目錄 - 6 - 第 1 章 前 言 1 第 2 章 地質背景 11 2.1 台灣西南部之地層簡述 11 2.2 台灣西南部主要斷層簡述 14 2.2.1後甲里斷層(HCLF) 15 2.2.2小崗山斷層(HKSF) 16 2.2.3龍船斷層(LNCF) 16 2.2.4旗山斷層(CHNF) 16 2.2.5古亭坑斷層(GTFK) 16 2.2.6右昌斷層(YCF) 17 2.3 地震活動 17 2.4 脫逸構造(TECTONIC ESCAPE) 18 第 3 章 大地測量觀測資料解算與速度場分析 20 3.1 GPS觀測資料 20 3.1.1 測站資料 20 3.2 水平速度場 21 3.2.1 座標時間序列與速度解算 21 3.2.2 內政部國土測繪中心移動站速度 21 3.2.3 以KMNM為基準之水平速度場 23 3.2.4 以KASU為基準之水平速度場 25 3.3 水準測量高程資料 25 3.3.1 內政部水準資料 28 3.3.2 地調所水準資料 28 3.3.3 工研院資料 29 3.3.4 GPS連續站 29 3.4 垂直速度場 29 第 4 章 三維速度場之剖面分析 30 4.1 鳳山斷層北段速度剖面 30 4.2 鳳山斷層中段速度剖面 32 4.3 鳳山斷層南段速度剖面 33 4.4 北中南速度剖面小結 34 第 5 章 永久散射體差分干涉技術(PSINSAR) 36 5.1 雷達影像 36 5.2 ALOS 39 5.3 PALSAR資料 39 5.4 STAMPS解算 42 5.5 穩定性測試 44 5.4.1 2008/01/20為主影像成果 44 5.4.2 2008/04/21為主影像成果 49 5.4.3 2010/01/25為主影像成果 54 5.6 LOS速度場 59 第 6 章 大地測量與PSINSAR成果比對 62 6.1 LOS速度場修正方法 62 6.1.1 GPS連續站與LOS投影 62 6.2 GPS與PSINSAR比較成果 69 6.3 垂直位移分量移除 73 6.4 LOS之於水平速度場影響分析 74 第 7 章 討 論 77 7.1 PSINSAR與GPS、水準高程資料比較 77 7.2 ALOS-1影像與ERS-1/2、ENVISAT比較 77 7.3 大地構造與泥貫入體作用之構造特性分析 79 第 8 章 結 論 82 8.1 鳳山斷層位置判釋 82 8.2 鳳山斷層運動型態 82 8.3 PSINSAR於斷層監測之貢獻 83 參考文獻 85 圖目錄 圖1.1 台灣大地構造框架(CHING ET AL., 2011)。 2 圖1.2 鳳山地區沿線地形判釋成果圖 (沈淑敏等,2006) 。 4 圖1.3 中央地質調查所於2000年公布之臺灣活動斷層分布圖。 5 圖1.4 現最新版之2012年中央地質調查所公布之臺灣活動斷層分布圖。 6 圖1.5 DEFFONTAINES ET AL. (1997) 所描繪之鳳山轉換斷層帶位置示意。 7 圖1.6 LACOMBE ET AL. (1999) 所描繪之鳳山轉換斷層帶位置示意。 8 圖1.7 台灣西南部之活動斷層與地震分布(李寧,2013)。 10 圖2.1 台灣西南部五十萬分之一地質圖(中央地質調查所,2002)。 12 圖2.2 台灣西南部斷層分布圖。 15 圖2.3 台灣西南部ML > 4歷史地震分布圖。 17 圖2.4 台灣西部受北港高地作用之構造解釋(DEFFONTAINES ET AL., 1997)。 18 圖2.5 台灣西南部旗山轉換斷層以南之構造脫逸四個單位分界(LACOMBE ET AL., 2001)。 19 圖3.1 GPS連續站與內政部移動站速度資料比較。 23 圖3.2 台灣西南部GPS水平速度場。 24 圖3.3 台灣西南部GPS水平速度場。相對山脈區高樹KASU測站之水平速度場。 26 圖3.4 台灣西南部垂直速度場。高程相對KMNM測站。 27 圖4.1 針對鳳山斷層切三段剖面。 31 圖4.2 鳳山斷層北段速度剖面。 32 圖4.3 鳳山斷層中段速度剖面。 33 圖4.4 鳳山斷層南段速度剖面。 35 圖5.1 合成天線陣列示意圖 (修改自黃孟涵,2006)。 37 圖5.2 雷達差分干涉示意圖。(修改自張中白,2004)。 38 圖5.3 相位回復概念示意(LOFFELD ET AL., 2008)。 39 圖5.4 ALOS編號447_440影像範圍與臺灣西南部鳳山斷層研究區域。 41 圖5.5 ALOS(447_440)以20080120為主影像之基線長。 42 圖5.6 STAMPS處理流程 (謝亞璇,2015) 。 43 圖5.7 以20080120為主影像之干涉成果序列。 45 圖5.8 以20080120為主影像並移除地形效應與軌道誤差之相位解序列。 45 圖5.9主影像為20080120之14張影像之LOS方向速度場。 46 圖5.10主影像為20080120之14張影像之PS點誤差對應。 47 圖5.11 主影像為20080120甲仙地震前影像之LOS方向速度場。 48 圖5.12 主影像為20080120甲仙地震前影像之PS點誤差對應。 49 圖5.13 以20080421為主影像之干涉成果序列。 50 圖5.14 以20080421為主影像並移除地形效應與軌道誤差之相位解序列。 50 圖5.15 主影像為20080421之16張影像之LOS方向速度場。 51 圖5.16 主影像為20080421之16張影像之PS點誤差對應。 52 圖5.17 主影像為20080421甲仙地震前影像之LOS方向速度場。 53 圖5.18 主影像為20080421甲仙地震前影像之PS點誤差對應。 54 圖5.19 以20100125為主影像之干涉成果序列。 55 圖5.20 以20100125為主影像並移除地形效應與軌道誤差之相位解序列。 55 圖5.21主影像為20100125之15張影像之LOS方向速度場。 56 圖5.22 主影像為20100125之15張影像之PS點誤差對應。 57 圖5.23 主影像為20100125甲仙地震前影像之LOS方向速度場。 58 圖5.24主影像為20100125甲仙地震前影像之PS點誤差對應。 59 圖5.25 龍船段層與旗山斷層之間速度剖面(台灣世曦工程股份有限公司,2014)。 61 圖5.26 ALOS1對於台灣西南部拍攝影像之空間視角關係。 61 圖6.1 阿公店GPS連續站AKND對應PSINSAR時段之座標時間序列。 63 圖6.2 以20080120為主影像共14張影像干涉之MLV與GPS三維至LOS投影,兩者皆相對於AKND測站之成果。 64 圖6.3 以20080120為主影像至甲仙地震前之MLV與GPS三維至LOS投影,兩者皆相對於AKND測站之成果。 65 圖6.4 以20080421為主影像共16張影像干涉之MLV與GPS三維至LOS投影,兩者皆相對於AKND測站之成果。 66 圖6.5 以20080421為主影像至甲仙地震前之MLV與GPS三維至LOS投影,兩者皆相對於AKND測站之成果。 67 圖6.6 以20100125為主影像共15張影像干涉之MLV與GPS三維至LOS投影,兩者皆相對於AKND測站之成果。 68 圖6.7 以20100125為主影像至甲仙地震前之MLV與GPS三維至LOS投影,兩者皆相對於AKND測站之成果。 69 圖6.8 圖6.2成果與GPS之LOS投影相關性,基準點為AKND測站。 70 圖6.9 圖6.3成果與GPS之LOS投影相關性,基準點為AKND測站。 71 圖6.10 圖6.4成果與GPS之LOS投影相關性,基準點為AKND測站。 71 圖6.11 圖6.5成果與GPS之LOS投影相關性,基準點為AKND測站。 72 圖6.12 圖6.6成果與GPS之LOS投影相關性,基準點為AKND測站。 72 圖6.13 圖6.7成果與GPS之LOS投影相關性,基準點為AKND測站。 73 圖6.14 垂直項量投影至LOS方向之內插速度場。數值皆相對於AKND測站。 74 圖6.15 MLV移除垂直項影響量後速度場與GPS連續站E、N項投影對照成果。 75 圖6.16 MLV水平項影響量在鳳山斷層北段,黑色虛線為鳳山斷層。 76 圖6.17 MLV水平項影響量在鳳山斷層中段,黑色虛線為鳳山斷層。 76 圖6.18 MLV水平項影響量在鳳山斷層南段,黑色虛線為鳳山斷層。 76 圖7.1 ERS-1/2與ENVISAT衛星影像使用PSINSAR所解算之平均LOS速度場(修改自中央地質調查所,2015)。 78 圖7.2 台灣西南部構造模型,深紅色CHNF為旗山斷層,FSTF在此為鳳山斷層(景國恩等人,2007)。 78 圖7.3 台灣南部陸上泥火山及西南海域海底泥火山分布圖 (陳松春,2012) 。 80 圖7.4 高雄鳥松與屏東萬丹鯉魚山的泥火山噴發點與噴發裂隙。 81 圖8.1 相對於高樹KASU測站之GPS水平速度場暨ALOS解算之平均LOS速度場。 83 表目錄 表1.1高雄屏東地區地層系統表(修改自江賢仁,2011)。 13 表3.1 水準資料統整 28 表5.1 PALSAR拍攝方式與感測器規格。 40  

    工研院能資所 (1998),地層下陷區水準點檢測-屏東縣沿海地區,經濟部水資源局:臺北市。
    中央地質調查所(2010),20100304地震地質調查報告,共86頁。
    中央地質調查所(2013年8月),高雄港都地質之美—高屏南臺灣的隆起,http://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=146036&ctNode=319&mp=104,最近檢索時間2016年6月。
    台灣世曦工程顧問股份有限公司(2014),國道3號田寮3號高架橋及中寮隧道安全檢測、監測技術服務委外大地變位監測分析與評估工作(103),共162頁。
    中央地質調查所(2015),「斷層活動性觀測研究第三階段-斷層整合性觀測與潛勢分析(3/4)」(第三年度),共430頁。
    中央氣象局(2016),地震專欄,http://www.cwb.gov.tw/V7/knowledge/planning/seismological.htm#TOP,最近檢索時間2016年6月。
    內政部國土測繪中心(2012),大地基準及一九九七座標系統2010年成果工作總報告,共137頁。
    孔冠傑(2013),台灣西南部動態坐標系統之建立,國立成功大學測量及空間資訊研究所碩士論文,共149頁。
    林啟文、張徽正、盧詩丁、石同生、黃文正(2000),台灣活動斷層概論第二版,五十萬分之一台灣活動斷層分布圖說明,經濟部中央地質調查所特刊,第十三號,共122 頁。
    林耕霈(2012),利用永久性散射體差分干涉法探討台南地區之地殼形變,國立中央大學地球物理研究所碩士論文,共81頁。
    江賢仁(2011),台灣高屏地區場址效應之探討與研究,國立中央大學地球物理研究所博士論文,共188頁。
    余水倍(1996),GPS 觀測之台灣地區速度場。第一屆 GPS 衛星定位學術及應用研習會論文集,私立明新工專土木科,第 368-380 頁。
    余輝龍、施輝煌、黃春盛、何智剛、曾寶樹(1990),台南縣龍船及高雄縣坑內、小滾水構造重點地質核查報告,中油內部報告。
    沈淑敏、張瑞津、楊貴三、林雪美、林宗儀(2006),地震地質調查及活動斷層資料庫建置:活動構造地形判釋及資料建置分析計畫總報告。經濟部中央地質調查所報告第95-13號。第48-49頁。
    徐慶雲(1975),台南縣坑內、龍船及高雄縣小滾水構造地質核查報告,中油內部報告。
    耿文博,(1981),台南以東丘陵區之地質,經濟部中央地質調查所會刊第一號,第1-31頁。
    孫習之、施垚鑫(1960),高雄縣大岡山至鳳山區間地質調查報告,中油內部報告。
    孫習之、施垚鑫(1964),高雄縣大寮探井井下地質報告。中油內部報告。
    翁群評(2001),小岡山斷層及其附近構造,國立中央大學地球物理研究所,共118頁。
    陳松春,石文卿(2001),臺灣西南部的泥火山分佈與油氣探勘潛能,鑛冶57/3,第65-74頁。
    黃孟涵(2006),以合成孔徑雷達干涉法研究台灣之地殼變形。國立台灣大學地質科學研究所碩士論文,共 185 頁。
    黃郁棠(2013),利用統計方法改善永久散射體干涉雷達技術於 地表變形偵測之應用,國立中央大學土木工程學系碩士論文,共80頁。
    景國恩(2013),活動斷層潛移至鎖定區段之研究:鳳山轉換斷層帶、池上斷層與菲律賓斷層雷伊泰段(1/3),共30頁。
    楊貴三(1986),台灣活斷層的地形學研究-特論活斷層與地形面的關係。私立中國文化大學地學研究所博士論文,共173頁。
    楊燦堯(2003),台灣的泥火山: 臺大校友雙月刊第29 期雙月刊。
    綠環工程技術顧問有限公司,2015,104年度多元化監測及整合技術應用於臺北、嘉義、高雄及屏東地區地層下陷監測及分析計畫,委辦單位:經濟部水利署。
    鄭宏祺(2000),台灣西南部至屏東地區地質構造之研究,國立中央大學應用地質研究所碩士論文,共92頁。
    蕭逸凡(2010),永久散射體雷達干涉技術應用於地表變遷偵測,國立中央大學土木工程學系碩士論文,共65頁。
    謝亞璇 (2015),利用PSInSAR與GPS探討位於萊特島菲律賓斷層潛移至鎖定過渡帶之運動特性,國立成功大學測量及空間資訊研究所碩士論文,共108頁。
    Barber, C. B., Dobkin, D. P., and Huhdanpaa, H.(1996), The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 469-483.
    Chang, C.-P., K.-S. Chen, C.-T. Wang, J.-Y. Yen, T.-Y. Chang, and C.-W. Lin, (2004), Application of space borne radar interferometry on crustal deformations in Taiwan: a perspective from the nature of events, Terr. Atmos. Ocean. Sci.,15 (3), p.523-543.
    Chen, K.‐H., M. Yang, Y.‐T. Huang, K.‐E. Ching, and R.‐J. Rau (2011), Vertical displacement rate field of Taiwan from geodetic levelling data 2000‐2008, Surv. Rev., 43, 296-302.
    Chen, P. H., Huang, T. C., Huang, C. Y., and Tsai, L. P. (1977), A study of the late Neogene marine sediments of the Chishan area, Taiwan: Paleomagnetic stratigraphy, biostratigraphy and paleoclimate: Mem. Geol. Soc. China, no.2, p.169-190.
    Chen, Q., G. Liu, X. Ding, J.-C. Hu, L. Yuan, P. Zhong, and M. Omura (2010), Tight integration of GPS observations and persistent scatterer InSAR for detecting vertical ground motion in Hong Kong, International Journal of Applied Earth Observation and Geoinformation, 12(6), 477-48610.1016/j.jag.2010.05.002.
    Ching, K.‐E., R.‐J. Rau, J.‐C. Lee, and J‐C Hu (2007), Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995‐2005, Earth Planet. Sci. Lett., 262, 601‐619.
    Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (Eds.) (2007) Bernese GPS Software Version 5.0, Astronomical Institute, University of Berne, 612 pp.
    Deffontaines, B., Lacombe, O., Angelier, J., Chu, H. T., Mouthereau, F., Lee, C.T., Deramond, J., Lee, J. F., Yu, M. S., and Liew, P. M. (1997), Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach. Tectonophysics, 274(1), 61-82.
    Ferretti, A., C. Prati, and F. Rocca (2000), Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, Geoscience and Remote Sensing, IEEE Trans. Geosci. Remote Sens, 38(5), 2202-2212.
    Gabriel, A. K., R. M. Goldstein, and H. A. Zebker (1989), Mapping small elevation changes over large areas: Differential radar interferometry, J. Geophys. Res., 94, 9183-9191.
    Geiger, A. (1989), Simulation Disturbances in GPS by Continuous Satellite Distribution, Journal of Surveying Engineering, 114(4), 182-194.
    Hooper, A., H. Zebker, P. Segall, and B. Kampes (2004), A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical research letters, 31(23).
    Hooper, A. (2008), A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophysical Research Letters, 35(16)10.1029/2008gl034654.
    Hooper, A., and H. A. Zebker (2007), Phase unwrapping in three dimensions with application to InSAR time series, JSOA A, 24(9), 2737-2747.
    Hooper, A., H. Zebker, P. Segall, and B. Kampes (2004), A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical Research Letters, 31(23)Artn L23611, Doi 10.1029/2004gl021737.
    Hooper, A., P. Segall, K. Johnson, and J. Rubinstein (2002), Reconciling seismic and geodetic models of the 1989 Kilauea south flank earthquake, Geophysical Research Letters, 29(22)Artn 2062, Doi 10.1029/2002gl016156.
    Hsu, Y.- J., P. Segall, S.-B. Yu, L.-C. Kuo, and C. A. Williams (2007), Temporal and spatial variations of postseismic deformation following the 1999 Chi-Chi, Taiwan earthquake, Geophys. J. Int., 169, 367-379.
    Hsu, Y.-J., J.-P . Avouac, S.-B. Yu, C.-H. Chang, Y.-M. Wu, and J. Woessner (2009), Spatio-temporal Slip, and Stress Level on the Faults within the Western Foothills of Taiwan: Implications for Fault Frictional Properties, Pure appl. geophys., doi:10.1007/s00024-009-0510-5.
    Ji, C., D. V. Helmberger, T.-R. A. Song, K.-F. Ma, and D. J. Wald (2001), Slip distribution and tectonic implications of the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett., 28, 4379-4382.
    Ji, C., D. V. Helmberger, D. J. Wald, and K.-F. Ma (2003), Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108, 2412, doi:10.1029/2002JB001764.
    Johnson, K. M., Y.‐J. Hsu, P. Segall, and S.‐B. Yu (2001), Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data, Geophys. Res. Lett., 28, 2285-2288.
    Johnson, K. M., P. Segall, and S.-B. Yu (2005), A viscoelastic earthquake cycle model for Taiwan, J. Geophys. Res., 110, B10404, doi:10.1029/2004JB003516.
    Lacombe, O., Mouthereau, F., Deffontaines, B., Angelier, J., Chu, H. T., and Lee, C. T. (1999), Geometry and Quaternary kinematics of fold-and-thrust units of southwestern Taiwan. Tectonics, 18(6), 1198-1223.
    Li, Z., J. Muller, P. Cross, and EJ Fielding (2005), Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration.
    Li, Z., E. J. Fielding, P. Cross, and J.-P. Muller (2006), Interferometric synthetic aperture radar atmospheric correction: Medium Resolution Imaging Spectrometer and Advanced Synthetic Aperture Radar integration, Geophysical Research Letters, 33(6)10.1029/2005gl025299.
    Ma, K.-F., T.-R. A. Song, S.-J. Lee, and H.-I. Wu (2000), Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan, earthquake (Mw7.6)-Inverted from teleseismic data, Geophys. Res. Lett., 27, 3417-3420.
    Ma, K.-F., J. Mori, S.-J. Lee, and S. B. Yu (2001), Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am., 91, 1069-1087.
    Massonnet, D., and K. L. Feigl (1998), Radar interferometry and its application to changes in the earth's surface, Reviews of Geophysics, 36(4), 441-5008755-1209/98/97RG-03139.
    Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138-142.
    Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 75, 1135-1154.Ratschbacher, L., W. Frisch, H. G. Linzer, and O. Merle (1991), Lateral extrusion in the Eastern Alps, 2. Structural analysis, Tectonics, 10, 257-271.
    Onn, F., and H. A. Zebker (2006), Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network, J. Geophys. Res, 111(B9)10.1029/ 2005jb004012.
    Segall, P., and J. L. Davis (1997), GPS applications for geodynamics and earthquake studies. Annu. Rev. Earth Planet. Sci., 25, 301-336.
    Shyu, J. B. H., K. Sieh, Y.-G. Chen, and C.-S. Liu (2005), Neotectonic architecture of Taiwan and its implications for future large earthquakes, J. Geophys. Res., 110, B08402, doi:10.1029/2004JB003251.
    Sun, S. C. (1964), Photogeologic study of the Tainan-Kaohsiung coastal plain area, Taiwan. Petrol. Geol. Taiwan, 3, 39-51.
    Sylvester, A. G. (2000), Aseismic growth of Ventura Avenue anticline, southern California, 1978-1997: Evidence from precise leveling. Surveying and Land Information Systems, 60, 95-108.
    Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., and Cobbold, P. (1982), Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611-616.
    Wells, D. L., and K. J. Coppersmith (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, 974-1002.
    Yang, M., K.-H. Chen, and S.-W. Shiao (2003), A new height reference network in Taiwan, Survey Review, 37, 260-268.
    Yen, Y.-T., and K.-F. Ma (2011), Source-scaling relationship for M 4.6-8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan, Bull. Seism. Soc. Am., 101, 464-481.
    Yu, S.-B., H.-Y. Chen, and L.-C. Kuo (1997), Velocity field of GPS Stations in the Taiwan area, Tectonophysics, 274, 41-59.
    Zebker, H. A., and J. Villasenor (1992), Decorrelation in interferometric radar echoes, IEEE Trans. Geosci. Remote Sens, 30(5), 950-95910.1109/36.175330.
    Zebker, H. A., P. A. Rosen, and S. Hensley (1997), Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res, 102(B4), 7547-7563.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE