簡易檢索 / 詳目顯示

研究生: 謝宇航
Hsieh, Yu-Hang
論文名稱: 不同型態廢輪胎膠粉拌和瀝青之工程性質
Engineering Properties of Asphalt Binders Mixed with Different Types of Crumb Rubber
指導教授: 陳建旭
Chen, Jian-Shiu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 103
中文關鍵詞: 橡膠瀝青轎車胎粉儲存穩定性矽烷偶聯劑拌和時間
外文關鍵詞: Asphalt Rubber, Passenger Car Tire Crumb Rubber, Storage Stability, Silane Coupling Agent, Interaction Time
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢輪胎的回收過程中,轎車胎含有較多纖維,比較難以去化,轎車胎回收途徑較卡車胎受限;且將廢輪胎膠粉加入瀝青後,因兩材料之比重差異,易造成瀝青之儲存穩定性不佳等問題。本研究探討卡車胎粉與轎車胎粉製成橡膠瀝青之差異,以及在膠粉中含有過量纖維是否會對瀝青性質造成影響,並使用顆粒較細之膠粉以及矽烷偶聯劑,評估其儲存穩定性及物理性質是否有得到改善。研究結果顯示轎車胎粉製成之橡膠瀝青工程性質雖稍遜於卡車胎粉,但差異並不顯著,兩者皆可製成符合規範之橡膠瀝青;而若膠粉中含有纖維,對瀝青性質有提升的效果;至於儲存穩定性方面,使用顆粒較細的膠粉,可以顯著改善,但矽烷偶聯劑在本研究卻未能產生預期效果,可能其使用方法或所對應之使用材料仍有待進一步研究。

    In the process of recycling waste tires, Passenger car tires contain more fiber, which is more difficult to remove. Passenger car tire recycling is more difficult than truck tires; and when adding crumb rubber into asphalt, it is easy to have poor storage stability problem due to the difference in the specific gravity of the two materials. Problems such as poor storage stability. In this study, we explores the difference between the rubber asphalt made of truck tire crumb rubber and passenger car tire crumb rubber, and whether the excessive fiber contained in the crumb rubber affect the asphalt properties, and uses finer particles of crumb rubber and silane coupling agent to evaluate its storage stability and physical properties. The results show that the physical properties of rubber asphalt made from passenger car tire crumb rubber are slightly inferior to truck tire crumb rubber, but the difference is not significant, both can be made into rubber asphalt that meets the specifications. And if the crumb rubber contains fiber, the asphalt properties are improved. As for the storage stability, the use of finer particles of rubber can be significantly improved, but adding silane coupling agent failed to produce the expected results in this study. It may be that the method of use or the corresponding materials used are still to be further studied.

    摘要 I 英文延伸摘要 II 誌謝 VI 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-3 1.4 研究範圍 1-4 第二章 文獻回顧 2-1 2.1 瀝青 2-1 2.2 改質瀝青 2-1 2.2.1 改質劑 2-2 2.2.2 離析現象 2-3 2.2.3 降解現象 2-3 2.3 橡膠瀝青 2-5 2.3.1 廢輪胎膠粉產製 2-5 2.3.2 廢輪胎膠粉 2-7 2.3.3 廢輪胎膠粉應用 2-8 2.3.4 橡膠瀝青 2-11 2.3.5 橡膠瀝青混凝土 2-14 2.3.6 橡膠瀝青相關規範 2-17 2.3.7 矽烷偶聯劑 2-18 2.4 流變學 2-20 2.4.1 流變性能參數 2-20 2.4.2 流變性能參數與鋪面績效之關係 2-22 2.4.3 時間-溫度疊加原理 2-23 第三章 研究計畫 3-1 3.1 研究流程 3-1 3.2 試驗材料 3-3 3.2.1 基底瀝青 3-3 3.2.2 改質劑 3-3 3.2.3 添加劑 3-9 3.3 橡膠瀝青 3-10 3.3.1 廢輪胎膠粉預處理過程 3-10 3.3.2 橡膠瀝青拌和過程 3-11 3.3.3 橡膠瀝青物性試驗 3-13 第四章 結果與討論 4-1 4.1 試驗材料基本物性 4-1 4.1.1. 廢輪胎膠粉性質 4-1 4.1.2. 基底瀝青物理性質 4-5 4.1.3. 基底瀝青的比較 4-6 4.2 橡膠瀝青物理性質 4-7 4.2.1 175℃黏度 4-8 4.2.2 25℃針入度 4-12 4.2.3 軟化點 4-16 4.2.4 溶解度 4-20 4.2.5 彈性回復率 4-21 4.2.6 儲存穩定性 - 離析 4-25 4.3 橡膠瀝青的流變性質 4-29 4.3.1 拌和時間與G*的關係 4-30 4.3.2 拌和時間與δ的關係 4-31 4.3.3 抗車轍參數G*/sinδ 4-32 4.3.4 綜合分析 4-33 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-2 參考文獻 參-1

    台灣營建研究院 (2014), 廢輪胎橡膠瀝青鋪面應用拓展暨監測計畫,台北。
    台灣營建研究院 (2015), 行政院環境保護署橡膠瀝青混凝土鋪面技術手冊,台北。
    林政璋 (2000) 廢輪胎橡膠瀝青之性質研究,國立中華大學土木工程研究所碩士論文,新竹。
    姜紹平 (2006) 廢輪胎橡膠瀝青混合料鋪面路段之成效試驗,國立中央大學土木工程研究所碩士論文,桃園。
    陳志恆(1999), 廢橡膠─廢輪胎資源化與管理,行政院環境保護署,台北。
    張興剛、張用兵 (2006).「硅烷偶聯劑在填充橡膠中的應用」,材料開發與應用,第21卷,第6期,第41-44頁。
    蔡攀鰲(1984), 瀝青混凝土,台南。
    Abdelrahman, M. (2006). Controlling performance of crumb rubber-modified binders through addition of polymer modifiers. Transportation Research Record: Journal of the Transportation Research Board, No.1962, pp.64–70.
    Airey, G.D. (2002). Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, Vol.16, pp.473-487.

    American Society of Testing and Materials (ASTM) (2012). Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. ASTM E11-17, West Conshohocken, Pennsylvania.
    Bai, N., B. Ling, R. Xiao, J. Li, X. Li, and X. Zhang (2015). The advance research of organic silane rubber asphalt stabilizer. Metallurgical and Mining Industry, Issue.9, pp.323-328.
    Cao, W., S. Liu, J. Fang, and Y. Li (2009). Effect of silane coupling agent on properties of asphalt-rubber (AR) binders. Journal of Building Materials, Vol.12(4), pp.497-500.
    Chesner, W.H., R.J. Collins, and M.H. Mackay (1998). User Guidelines for Waste and By-Product Materials in Pavement Construction, FHWA-RD-97-148, McLean, VA.
    Fontes, L.P.T.L, G. triches, J.C. Pais, and P.A.A. Pereira (2009). Evaluating permanent deformation in asphalt rubber mixtures. Construction and Building Materials, Vol.24(7), pp.1193-1200.
    Han, L., M. Zheng, and C. Wang (2016). Current status and development of terminal blend tyre rubber modified asphalt. Construction and Building Materials, Vol.128, pp.399-409.
    Lin, P., W. Huang, N. Tang, and F. Xiao (2017). Performance characteristics of terminal blend rubberized asphalt with SBS and polyphosphoric acid. Construction and Building Materials, Vol.141, pp.171-182.
    Lu, X., and U. Isacsson (1996). Rheological characterization of styrene-butadiene-styrene copolymer modified bitumens. Construction and Building Materials, Vol.11(1), pp.23-32.
    Morgan, P., and M. Alan (1995). The Shell Bitumen Industrial Handbook, Shell Bitumen, Chertsey, Surrey, UK.
    Oliver, J.W.H (1981). Modification of paving asphalts by digestion with scrap rubber. Transportation Research Board, Transportation Research Record 821.
    Presti, D.L. (2013). Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review. Construction and Building Materials, Vol.49, pp.863-881.
    Putman, B.J., and Amirkhanian S.N. (2004). Utilization of waste in stone matrix asphalt mixtures. Resources,, Conservation and Recycling, Vol.42, pp.265-274.

    Sengoz, B., A. Topal, and G. Isikyakar (2009). Morphology and image analysis of polymer modified bitumens. Construction and Building Materials, Vol.23, pp.1986-1992.
    Sengoz, B., and G. Isikyakar (2008). Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. Journal of Hazardous Materials, Vol.50(2), pp.424-432.
    Skok, E. (2014) Asphalt Paving Technology 2014, DEStech Publications, Washington, D.C.
    Souliman, M.I., M. Mamlouk, and A. Eifert (2016). Cost-effectiveness of rubber and polymer modified asphalt mixtures as related to sustainable fatigue performance. Procedia Engineering, Vol.145, pp.404-411.
    Subhy, A., D.L. Presti, and G. Airey (2015). An investigation on using pre-treated tyre rubber as a replacement of synthetic polymers for bitumen modification. Road Materials and Pavement Design, Vol.16(S1), pp.245-264.
    Sun, D., and W. Lu (2006). Phase morphology of polymer modified road asphalt. Petroleum Science and Technology, Vol.24, pp.839-849.
    Kennedy, T.W., G.A. Huber, E.T. Harrigan, R.J. Cominsky, C.S. Hughes, H.V. Quintus, and J.S. Moulthrop (1994). Superior performing asphalt pavements (superpave): The product of the SHRP asphalt research program. Strategic Highway Research Program, National Research Council, Washington, D.C.
    Urquhart, R., and K.Y. Khoo (2013). Investigations into the effects of polymer segregation and degradation in polymer modified binders. Austroads Technical Report, NO.AP-T227-13.
    Venudharan, V., K.P. Biligiri, J.B. Sousa, and G.B. Way (2016). Asphalt-rubber gap-graded mixture design practices: a state-of-the-art research review and future perspective. Road Materials and Pavement Design, Vol.18(3), pp.730-752.
    Way, G.B., K.E. Kaloush, and K.P. Biligiri (2012). Asphalt-Rubber Standard Practice Guide. Rubber Pavements Association, 2nd Edition, Tempe, Arizona.

    Wu, S., Z. Chen, Q. Ye, and W. Liao (2006). Effect of fiber additive on the high temperature property of asphalt binder. Journal of Wuhan University of Technology, Vol.12(1).
    Yildirim, Y.(2007). Polymer modified asphalt binders. Construction and Building Materials, Vol.21, pp.66-71.
    Yoo, P.J., B.S. Eom, K.S. Park, and D.H. Kim (2017). Aggregate pre-coating approach using rubber- and silane-coupled thermoset polymer and emulsion for warm-mix asphalt mixtures. Construction and Building Materials, Vol.152, pp.708-714.
    Yusoff, N.I.M., M.T. Shaw, and G.D. Airey (2011). Modelling the linear viscoelastic rheological properties of bituminous binders. Construction and Building Materials, Vol.25(5), pp.2171-2189.
    Zanetti, M.C., B. Barbara, D. Dalmazzo, M. Lanotti, and E. Santagata (2018). Determination of crumb rubber content of asphalt rubber binders. Journal of Materials in Civil Engineering, Vol.30(4): 04018041.
    Zhu, J., B. Birgisson, and N. Kringos (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, Vol.54, pp.18-38.

    無法下載圖示 校內:2028-06-01公開
    校外:2028-06-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE