簡易檢索 / 詳目顯示

研究生: 黃品綺
Huang, Pin-Chi
論文名稱: 含偶氮苯雙團聯共聚物之結構及光應答行為之研究
Studies of the Structure and Photoresponsive Behavior of Azobenzene-Containing Diblock Copolymers
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 134
中文關鍵詞: 偶氮苯團聯共聚物光應答行為螢光
外文關鍵詞: azobenzene, diblock copolymer, photoresponsive behavior, fluorescence
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成具有光異構化特性之偶氮苯單體,再以原子轉移自由基聚合法製備一系列含不同偶氮苯莫耳分率之雙團聯共聚物poly(tert-butyl acrylate)-block-poly(6-[4-(4'-methoxyphenylazo)phenoxy] hexylmethacrylate) (PtBA-b-PAzoMA),並利用小角度中子散射觀察其在不同溶劑中結構的變化。PtBA-b-PAzoMA於中性溶劑中為random coil之結構,於選擇性溶劑中則是會形成微胞。
    由於偶氮苯之光異構化特性,因此高分子可經由紫外光誘導其構型從穩定的反式異構物轉變為介穩的順式異構物;反之,順式異構物在可見光的照射下或是置於黑暗中會回復至反式異構物。將PtBA-b-PAzoMA溶於不同性質之溶劑(中性、選擇性、混合溶劑(DMF/hexanol))中,利用紫外光-可見光分光光譜儀分析其光異構化行為,結果顯示在選擇性溶劑中之光異構化速率相較於在中性溶劑中較慢,因為PtBA-b-PAzoMA在選擇性溶劑中會形成微胞,偶氮苯鏈段被包覆於內層,形成立體障礙,導致光異構化速率下降;在混合溶劑中,隨著hexanol含量增加,其光異構化速率亦是隨之下降。除此之外,偶氮苯鏈段的莫耳分率亦會影響偶氮苯分子於溶劑中之聚集型態及光異構化速率,當偶氮苯莫耳分率越大時,聚集型態變化為:non-association及H-aggregation比例逐漸下降,而J-aggregation比例則是逐漸增加。另外,光異構化速率則是隨著偶氮苯莫耳分率增加而下降。
    本研究亦探討PtBA-b-PAzoMA在不同溶劑中之螢光特性,PtBA-b-PAzoMA在選擇性溶劑之螢光放射強度會小於中性溶劑,這是由於PtBA-b-PAzoMA在選擇性溶劑中之聚集排列傾向於無螢光放射之H-aggregation型態所造成。在照射紫外光後,PtBA-b-PAzoMA在各溶劑中之螢光放射強度皆有提升,這是由於偶氮苯順式結構有利於螢光放射的發生;另外,照射紫外光後,在選擇性溶劑中,因所含偶氮苯的順式含量少於中性溶劑,所以整體螢光放射強度提升較少。

    In this study, we synthesized a series of azobenzene-containing block copolymers poly(tert-butyl acrylate)-block-poly(6-[4-(4'-methoxyphenylazo) phenoxy]hexylmethacrylate) (PtBA-b-PAzoMA) with various mole fractions of azobenzene through atom transfer radical polymerization. The morphology of PtBA-b-PAzoMA in DMF/hexanol mixed solvents was characterized by using small angle neutron scattering. In a neutral solvent (DMF), PtBA-b-PAzoMA exhibited a random coil conformation, whereas PtBA-b-PAzoMA assembled into micelles when dissolved in a selective solvent (hexanol).
    When PtBA-b-PAzoMA was subjected to UV illumination, azobenzene mesogens transformed from stable trans-isomers to metastable cis-isomers and the reverse process could be initiated via visible light or in dark. We dissolved PtBA-b-PAzoMA in various solvents, including neutral solvents, selective solvents, and DMF/hexanol mixed solvents, and investigated the photoresponsive behavior of PtBA-b-PAzoMA using UV-Vis spectroscopy. The photoisomerization rate of PtBA-b-PAzoMA in a selective solvent was slower than that in a neutral solvent. This was attributed to the steric hindrance caused by the micelle formation of PtBA-b-PAzoMA with azobenzene moieties in the core of micelles in a selective solvent. When PtBA-b-PAzoMA was dissolved in DMF/hexanol mixed solvents, the photoisomerization rate decreased with an increase in the content of hexanol. The mole fraction of azobenzene moieties also affected the photoisomerization rate and aggregation state of PtBA-b-PAzoMA. With an increase in the mole fraction of azobenzene segment, the population of both non-associated and H-aggregated azobenzene mesogens decreased, whereas the population of J-aggregated mesogens increased. Furthermore, the photoisomerization rate decreased when the mole fraction of azobenzene segment was increased.
    We also investigated the fluorescence behavior of PtBA-b-PAzoMA in various solvents. The intensity of the fluorescence emission of PtBA-b-PAzoMA in neutral solvents was higher than that in selective solvents, which was associated with the high population of non-emissive H-aggregated mesogens in selective solvents. The fluorescence emission was increased with UV illumination, which was originated from the formation of cis-isomers. The bent-like cis-isomers inhibited photoinduced electron transfer, thereby enhancing the fluorescence emission. By contrast, after UV illumination, the population of cis-isomers in selective solvents was less than that in neutral solvents, resulting in the less enhancement of the fluorescence emission of PtBA-b-PAzoMA in selective solvents.

    摘要 I Abstract III Extended Abstract V 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻回顧 3 2.1共聚合物 3 2.1.1共聚物 3 2.1.2雙親性團聯共聚物 4 2.2雙團聯共聚物之自組裝行為 5 2.3偶氮苯 8 2.3.1偶氮苯之光化學 8 2.3.2偶氮苯光異構化之動力學 12 2.3.3偶氮苯之聚集 14 2.4含偶氮苯之雙團聯共聚物 16 2.5偶氮苯之螢光特性 23 2.6偶氮苯高分子之應用 32 2.6.1奈米藥物傳輸標靶 32 2.6.2控制材料的結構 33 2.6.3光蝕刻技術 35 第三章 實驗 37 3.1藥品 37 3.2合成步驟 39 3.2.1偶氮苯單體合成 39 3.2.2巨起始劑PtBA-Br合成 41 3.2.3團聯共聚物PtBA-b-PAzoMA合成 42 3.3分析儀器 43 3.3.1核磁共振儀(NMR) 43 3.3.2凝膠滲透層析儀(GPC) 44 3.3.3傅立葉轉換紅外光譜(FTIR) 45 3.3.4紫外光-可見光分光光譜儀(UV-visible spectrophotometer) 46 3.3.5螢光分光光譜儀(Fluorescence spectrophotometer) 47 3.3.6小角度中子散射(SANS) 48 第四章 結果與討論 53 4.1團聯共聚物合成 53 4.1.1偶氮苯單體分析 53 4.1.2 PtBA-Br巨起始劑合成分析 57 4.1.3含偶氮苯團聯共聚物PtBA-b-PAzoMA合成分析 59 4.2溶解度參數 63 4.3團聯共聚物於中性溶劑與選擇性溶劑中 67 4.3.1團聯共聚物結構之探討 67 4.3.2團聯共聚物於不同溶劑中之光異構化特性 74 4.3.2.1團聯共聚物之光異構化特性 76 4.3.2.2 PAzoMA莫耳分率對光異構化特性的影響 86 4.3.3團聯共聚物於不同溶劑中之螢光特性 92 4.3.3.1團聯共聚物之螢光特性 93 4.3.3.2團聯共聚物照射紫外光後之螢光特性 96 4.3.3.3 PAzoMA莫耳分率對螢光特性的影響 99 4.4團聯共聚物於混合溶劑中 102 4.4.1團聯共聚物結構之探討 102 4.4.2團聯共聚物於混合溶劑中之光異構化特性 107 4.4.2.1團聯共聚物之光異構化特性 107 4.4.2.2 PAzoMA莫耳分率對光異構化特性的影響 115 4.4.3團聯共聚物於混合溶劑中之螢光特性 119 4.4.3.1團聯共聚物之螢光特性 119 4.4.3.2團聯共聚物照射紫外光後之螢光特性 121 4.4.3.3 PAzoMA莫耳分率對螢光特性的影響 123 第五章 結論 125 參考文獻 127

    [1] F. H. Schacher, P. A. Rupar, and I. Manners, "Functional block copolymers: nanostructured materials with emerging applications," Angewandte Chemie International Edition,. 51, 7898-7921, 2012.
    [2] M. Karayianni and S. Pispas, "Self-assembly of amphiphilic block copolymers in selective solvents," in Fluorescence Studies of Polymer Containing Systems, ed: Springer, 27-63, 2016.
    [3] J. W. Park, H. Kim, and M. Han, "Polymeric self-assembled monolayers derived from surface-active copolymers: a modular approach to functionalized surfaces," Chemical Society Reviews, 39, 2935-2947, 2010.
    [4] S. B. Darling, "Directing the self-assembly of block copolymers," Progress in Polymer Science,32, 1152-1204, 2007.
    [5] F. S. Bates, "Polymer-polymer phase behavior," Science, 251, 898-905, 1991.
    [6] A. K. Khandpur, S. Forster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, et al., "Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition," Macromolecules, 28, 8796-8806, 1995.
    [7] F. S. Bates and G. H. Fredrickson, "Block copolymers - Designer soft materials," Physics Today, 52, 32-38, 1999.
    [8] E. Mitscherlich, "Ueber das stickstoffbenzid," Annales Pharmaceutiques, 12, 311–314, 1834.
    [9] E. Merino and M. Ribagorda, "Control over molecular motion using the cis-trans photoisomerization of the azo group," Beilstein Journal of Organic Chemistry, 8, 1071-1090, 2012.
    [10] H. Rau, "Spectroscopic properties of organic azo compounds," Angewandte Chemie International Edition in English, 12, 224-235, 1973.
    [11] E. V. Brown and G. R. Granneman, "Cis-trans isomerism in the pyridyl analogs of azobenzene. Kinetic and molecular orbital analysis," Journal of the American Chemical Society, 97. 621-627, 1975.
    [12] N. Tamai and H. Miyasaka, "Ultrafast dynamics of photochromic systems," Chemical Reviews, 100, 1875-1890, 2000.
    [13] W. Freyer, D. Brete, R. Schmidt, C. Gahl, R. Carley, and M. Weinelt, "Switching behavior and optical absorbance of azobenzene-functionalized alkanethiols in different environments," Journal of Photochemistry and Photobiology A: Chemistry, 204, 102-109, 2009.
    [14] M. Sato, T. Kinoshita, A. Takizawa, and Y. Tsujita, "Photoinduced conformational transition of polypeptides containing azobenzenesulfonate in the side chains," Macromolecules, 21, 1612-1616, 1988.
    [15] J. Henzl, M. Mehlhorn, H. Gawronski, K. H. Rieder, and K. Morgenstern, "Reversible cis–trans isomerization of a single azobenzene molecule," Angewandte Chemie International Edition, 45, 603-606, 2006.
    [16] G. Angelini, N. Canilho, M. Emo, M. Kingsley, and C. Gasbarri, "Role of Solvent and Effect of Substituent on Azobenzene Isomerization by Using Room-Temperature Ionic Liquids as Reaction Media," Journal of Organic Chemistry, 80, 7430-7434, 2015.
    [17] M. A. Kienzler, A. Reiner, E. Trautman, S. Yoo, D. Trauner, and E. Y. Isacoff, "A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor," Journal of the American Chemical Society, 135, 17683-17686, 2013.
    [18] R. Siewertsen, H. Neumann, B. Buchheim-Stehn, R. Herges, C. Näther, F. Renth, et al., "Highly efficient reversible Z− E photoisomerization of a bridged azobenzene with visible light through resolved S1 (nπ*) absorption bands," Journal of the American Chemical Society, 131, 15594-15595, 2009.
    [19] S. Venkataramani, U. Jana, M. Dommaschk, F. Sönnichsen, F. Tuczek, and R. Herges, "Magnetic bistability of molecules in homogeneous solution at room temperature," Science, 331, 445-448, 2011.
    [20] G. J. Wang, D. Yuan, T. T. Yuan, J. Dong, N. Feng, and G. X. Han, "A visible light responsive azobenzene-functionalized polymer: Synthesis, self-assembly, and photoresponsive properties," Journal of Polymer Science Part A-Polymer Chemistry, 53, 2768-2775, 2015.
    [21] G. S. Hartley, "The cis-form of azobenzene," Nature, 140, 281-281, 1937.
    [22] Z. F. Liu, K. Morigaki, T. Enomoto, K. Hashimoto, and A. Fujishima, "Kinetic studies on the thermal cis-trans isomerization of an azo compound in the assembled monolayer film," The Journal of Physical Chemistry, 96, 1875-1880, 1992.
    [23] Z.-F. Liu, K. Hashimoto, and A. Fujishima, "Thermal cis—trans isomerization kinetics of azo compound in the assembled monolayer film: an electrochemical approach," Chemical Physics Letters, 185, 501-504, 1991.
    [24] V. V. Jerca, F. A. Jerca, I. Rau, A. M. Manea, D. M. Vuluga, and F. Kajzar, "Advances in understanding the photoresponsive behavior of azobenzenes substituted with strong electron withdrawing groups," Optical Materials, 48, 160-164, 2015.
    [25] K. S. Yim and G. G. Fuller, "Influence of phase transition and photoisomerization on interfacial rheology," Physical Review E, 67, 041601, 2003.
    [26] I. Mita, K. Horie, and K. Hirao, "Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film," Macromolecules, 22, 558-563, 1989.
    [27] B. Kumar and K. A. Suresh, "Kinetics of trans-cis isomerization in azobenzene dimers at an air-water interface," Physical Review E, 80, 5, 2009.
    [28] C. A. Hollingsworth, P. G. Seybold, L. B. Kier, and C. K. Cheng, "First‐order stochastic cellular automata simulations of the lindemann mechanism," International journal of chemical kinetics, 36, 230-237, 2004.
    [29] S. Wu, L. Wang, A. Kroeger, Y. Wu, Q. Zhang, and C. Bubeck, "Block copolymers of PS-b-PEO co-assembled with azobenzene-containing homopolymers and their photoresponsive properties," Soft Matter, 7, 11535-11545, 2011.
    [30] H. Menzel, B. Weichart, A. Schmidt, S. Paul, W. Knoll, J. Stumpe, et al., "Small-angle X-ray scattering and ultraviolet-visible spectroscopy studies on the structure and structural changes in Langmuir-Blodgett films of polyglutamates with azobenzene moieties tethered by alkyl spacers of different length," Langmuir, 10, 1926-1933, 1994.
    [31] X. Tong, L. Cui, and Y. Zhao, "Confinement effects on photoalignment, photochemical phase transition, and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers," Macromolecules, 37, 3101-3112, 2004.
    [32] H. Yu, T. Iyoda, and T. Ikeda, "Photoinduced alignment of nanocylinders by supramolecular cooperative motions," Journal of the American Chemical Society, 128, 11010-11011, 2006.
    [33] M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, et al., "Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage," Dyes and Pigments, 114, 24-32, 2015.
    [34] H. Hafiz and F. Nakanishi, "Photoresponsive liquid crystal display driven by new photochromic azobenzene-based Langmuir–Blodgett films," Nanotechnology, 14, 649, 2003.
    [35] S. Pearson, D. Vitucci, Y. Y. Khine, A. Dag, H. Lu, M. Save, et al., "Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells," European Polymer Journal, 69, 616-627, 2015.
    [36] S. Jing, L. Yong-Gang, M. Ji, and X. Li, "Low driving voltage and analysis of azobenzene polymer doped liquid crystal grating," Chinese Physics Letters, 23, 3285, 2006.
    [37] L. Ding, J. Qiu, J. Li, C. Wang, and L. Wang, "Novel photoresponsive linear, graft, and comb‐like copolymers with azobenzene chromophores in the main‐chain and/or side‐chain: facile one‐pot synthesis and photoresponse properties," Macromolecular rapid communications, 36, 1578-1584, 2015.
    [38] L. Fang, G. Han, J. Zhang, H. Zhang, and H. Zhang, "Synthesis of well-defined easily crosslinkable azobenzene side-chain liquid crystalline polymers via reversible addition–fragmentation chain transfer polymerization and photomechanical properties of their post-crosslinked fibers," European Polymer Journal, 69, 592-604, 2015.
    [39] Z. Hruska, G. Hurtrez, S. Walter, and G. Riess, "An improved technique of the cumylpotassium preparation: application in the synthesis of spectroscopically pure polystyrene-poly (ethylene oxide) diblock copolymers," Polymer, 33, 2447-2449, 1992.
    [40] G. Mao, J. Wang, S. R. Clingman, C. K. Ober, J. T. Chen, and E. L. Thomas, "Molecular design, synthesis, and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups," Macromolecules, 30, 2556-2567, 1997.
    [41] Y. Tian, K. Watanabe, X. Kong, J. Abe, and T. Iyoda, "Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties," Macromolecules, 35, 3739-3747, 2002.
    [42] G. Wang, X. Tong, and Y. Zhao, "Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates," Macromolecules, 37, 8911-8917, 2004.
    [43] J. H. Liu and Y. H. Chiu, "Behaviors of self‐assembled diblock copolymer with pendant photosensitive azobenzene segments," Journal of Polymer Science Part A: Polymer Chemistry, 48, 1142-1148, 2010.
    [44] Q. Jin, G. Liu, X. Liu, and J. Ji, "Photo-responsive supramolecular self-assembly and disassembly of an azobenzene-containing block copolymer," Soft Matter, 6, 5589-5595, 2010.
    [45] W. Su, H. Zhao, Z. Wang, Y. Li, and Q. Zhang, "Sphere to disk transformation of micro-particle composed of azobenzene-containing amphiphilic diblock copolymers under irradiation at 436nm," European Polymer Journal, 43, 657-662, 2007.
    [46] P.-C. Yang, C.-Y. Li, H.-C. Chen, and R.-S. Juang, "Synthesis, photochemical properties, and self-assembly of diblock copolymer bearing azobenzene moieties," Journal of the Taiwan Institute of Chemical Engineers, 54, 155-164, 2015.
    [47] M. Shimizu and T. Hiyama, "Organic fluorophores exhibiting highly efficient photoluminescence in the solid state," Chemistry–An Asian Journal, 5, 1516-1531, 2010.
    [48] Y. Li, N. Zhou, W. Zhang, F. Zhang, J. Zhu, Z. Zhang, et al., "Light‐driven and aggregation‐induced emission from side‐chain azoindazole polymers," Journal of Polymer Science Part A: Polymer Chemistry, 49, 4911-4920, 2011.
    [49] Q. Bo and Y. Zhao, "Fluorescence from an azobenzene-containing diblock copolymer micelle in solution," Langmuir, 23, 5746-5751, 2007.
    [50] Y. Xiang, X. Xue, J. Zhu, Z. Zhang, W. Zhang, N. Zhou, et al., "Fluorescence behavior of an azobenzene-containing amphiphilic diblock copolymer," Polymer Chemistry, 1, 1453-1458, 2010.
    [51] J. Xu, W. Zhang, N. Zhou, J. Zhu, Z. Cheng, Y. Xu, et al., "Synthesis of azobenzene‐containing polymers via RAFT polymerization and investigation on intense fluorescence from aggregates of azobenzene‐containing amphiphilic diblock copolymers," Journal of Polymer Science Part A: Polymer Chemistry, 46, 5652-5662, 2008.
    [52] M. Han and M. Hara, "Intense fluorescence from light-driven self-assembled aggregates of nonionic azobenzene derivative," Journal of the American chemical Society, 127, 10951-10955, 2005.
    [53] X. Ran, H. Wang, L. Shi, J. Lou, B. Liu, M. Li, et al., "Light-driven fluorescence enhancement and self-assembled structural evolution of an azobenzene derivative," Journal of Materials Chemistry C, 2, 9866-9873, 2014.
    [54] A. Schlossbauer, S. Warncke, P. M. Gramlich, J. Kecht, A. Manetto, T. Carell, et al., "A Programmable DNA‐Based Molecular Valve for Colloidal Mesoporous Silica," Angewandte chemie international edition, 49, 4734-4737, 2010.
    [55] Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, et al., "Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid," ACS nano, 6, 6337-6344, 2012.
    [56] Y. Yu, M. Nakano, and T. Ikeda, "Photomechanics: directed bending of a polymer film by light," Nature, 425, 145-145, 2003.
    [57] M. Kondo, Y. Yu, and T. Ikeda, "How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid‐crystalline elastomers?," Angewandte Chemie, 118, 1406-1410, 2006.
    [58] Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, "Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene," Chemistry of materials, 16, 1637-1643, 2004.
    [59] Y. Li, Y. Deng, X. Tong, and X. Wang, "Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer," Macromolecules, 39, 1108-1115, 2006.
    [60] Y. Li, Y. Deng, Y. He, X. Tong, and X. Wang, "Amphiphilic azo polymer spheres, colloidal monolayers, and photoinduced chromophore orientation," Langmuir, 21, 6567-6571, 2005.
    [61] A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers," Chemical reviews, 102, 4139-4176, 2002.
    [62] A. Kausar, H. Nagano, T. Ogata, T. Nonaka, and S. Kurihara, "Photocontrolled translationalmotion of a microscale solid object on azobenzene‐doped liquid‐crystalline films," Angewandte Chemie International Edition, 48, 2144-2147, 2009.
    [63] T. Yoshino, M. Kondo, J. i. Mamiya, M. Kinoshita, Y. Yu, and T. Ikeda, "Three‐dimensional photomobility of crosslinked azobenzene liquid‐crystalline polymer fibers," Advanced Materials, 22, 1361-1363, 2010.
    [64] C. Probst, C. Meichner, K. Kreger, L. Kador, C. Neuber, and H. W. Schmidt, "Athermal Azobenzene‐Based Nanoimprint Lithography," Advanced Materials, 2016.
    [65] P. Rochon, E. Batalla, and A. Natansohn, "Optically induced surface gratings on azoaromatic polymer films," Applied Physics Letters, 66, 136-138, 1995.
    [66] A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, "Optical interference lithography using azobenzene‐functionalized polymers for micro‐and nanopatterning of silicon," Advanced materials, 23, 4174-4177, 2011.
    [67] Y. Norikane, E. Uchida, S. Tanaka, K. Fujiwara, E. Koyama, R. Azumi, et al., "Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solid–liquid patterning," Organic letters, 16, 5012-5015, 2014.
    [68] G. Fang, J. Maclennan, Y. Yi, M. Glaser, M. Farrow, E. Korblova, et al., "Athermal photofluidization of glasses," Nature communications, 4, 1521, 2013.
    [69] S. Lee, H. S. Kang, A. Ambrosio, J.-K. Park, and L. Marrucci, "Directional superficial photofluidization for deterministic shaping of complex 3D architectures," ACS applied materials & interfaces, 7, 8209-8217, 2015.
    [70] M. Z. Alam, A. Shibahara, T. Ogata, and S. Kurihara, "Synthesis of azobenzene-functionalized star polymers via RAFT and their photoresponsive properties," Polymer, 52, 3696-3703, 2011.
    [71] K. A. Davis and K. Matyjaszewski, "Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers," Macromolecules, 33, 4039-4047, 2000.
    [72] B. Hammouda, D. L. Ho, and S. Kline, "Insight into clustering in poly (ethylene oxide) solutions," Macromolecules, 37, 6932-6937, 2004.
    [73] J. S. Pedersen, "Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores," Journal of applied crystallography, 33, 637-640, 2000.
    [74] E. Stefanis and C. Panayiotou, "Prediction of Hansen solubility parameters with a new group-contribution method," International Journal of Thermophysics, 29, 568-585, 2008.
    [75] C. M. Hansen, "Table A.1, Hansen solubility parameters: a user's handbook, Second Edition," CRC Press, 372-508, 2007.
    [76] M. Haro, B. Giner, I. Gascón, F. M. Royo, and M. C. López, "Isomerization Behavior of an Azopolymer in Terms of the Langmuir− Blodgett Film Thickness and the Transference Surface Pressure," Macromolecules, 40, 2058-2069, 2007.
    [77] S. L. Upstone, "Ultraviolet/visible light absorption spectrophotometry in clinical chemistry," in Encyclopedia of Analytical Chemistry R.A. Meyers (Ed.), ed: John Wiley & Sons Ltd, Chichester, 1699-1714, 2000.
    [78] L. Shi, X. Ran, Y. Li, Q. Li, W. Qiu, and L. Guo, "Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator," RSC Advances, 5, 38283-38289, 2015.
    [79] F. Ma, N. Zhou, J. Zhu, W. Zhang, L. Fan, and X. Zhu, "Light-driven fluorescence enhancement of phenylazo indazole-terminated polystyrene," European Polymer Journal, 45, 2131-2137, 2009.
    [80] C. Reichardt, "Solvents and solvent effects in organic chemistry," 3rd ed: Wiley-VCH, 2003.
    [81] J. E. Bell, "Fluorescence: solution studies," Spectroscopy in biochemistry, 1, 155-194, 1981.
    [82] M. Homocianu, "Solvent effects on the electronic absorption and fluorescence spectra," Journal of Advanced Research in Physics, 2, 2011.
    [83] C. E. Melo, L. G. Nandi, M. Domínguez, M. C. Rezende, and V. G. Machado, "Solvatochromic behavior of dyes with dimethylamino electron‐donor and nitro electron‐acceptor groups in their molecular structure," Journal of Physical Organic Chemistry, 28, 250-260, 2015.
    [84] H. Satzger, S. Spörlein, C. Root, J. Wachtveitl, W. Zinth, and P. Gilch, "Fluorescence spectra of trans-and cis-azobenzene–emission from the Franck–Condon state," Chemical physics letters, 372, 216-223, 2003.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE