| 研究生: |
鐘豪文 Chung, Hau-Wen |
|---|---|
| 論文名稱: |
超寬頻 UWB 無線射頻收發機之寬頻 CMOS RFICs 的設計研究 Design of Broadband CMOS RFICs for UWB Wireless Transceiver |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 寬頻 、超寬頻 、射頻積體電路 |
| 外文關鍵詞: | UWB, Broadband, RFIC |
| 相關次數: | 點閱:95 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為三部份,其中研製之RFIC皆應用於DS-UWB收發機之中,第一部份為研製應用於DS-UWB接收機之3-5-GHz及6-10-GHz寬頻CMOS低雜訊放大器RFIC。第二部份為研製應用於DS-UWB接收機之3-5-GHz及6-10-GHz寬頻CMOS折疊式混波器RFIC。第三部份為研製應用於DS-UWB發射機之3-5-GHz及6-10-GHz寬頻CMOS發射放大器RFIC。第一及第二部份研製之RFIC使用TSMC 0.18-μm 1P6M CMOS製程,第三部份研製之RFIC則使用UMC 0.18-μm 1P6M CMOS 製程。應用於3-5-GHz頻帶之所有RFIC晶片,皆採用打鎊線至FR-4基板上量測;應用於6-10-GHz頻帶之所有RFIC晶片,皆採用on-wafer方式量測。
3-5-GHz寬頻CMOS低雜訊放大器,電路以一共源極電晶體與緩衝器串接而組成,量測結果增益為7.1-9 dB、雜訊指數為4.8-6.1 dB。6-10-GHz寬頻CMOS低雜訊放大器以單級疊接放大器及串接兩級疊接放大器實現,量測結果增益為6-8.4 dB、雜訊指數為4.6-5.1 dB;增益為11-13.8 dB、雜訊指數為5.3-6.2 dB。3-5-GHz寬頻CMOS折疊式混波器,量測結果LO power僅需要-10 dBm、轉換增益為3.8-6.9 dB @ 3 -3.99 GHz & 1.5-4.8 dB @ 4.01-5 GHz、input P1dB為-16.7- -15.1 dBm @ 3-3.99 GHz & -15.2- -12 dBm @ 4.01-5 GHz、LO-RF isolation 33.8 dB。6-10-GHz寬頻CMOS折疊式混波器,量測結果LO power僅需要-3 dBm、轉換增益為-1.8-0.8 dB @ 6 - 7.9 GHz & -3.3- -0.4 dB @ 8.1-10 GHz、input P1dB -6 dBm @ 6-7.9 GHz & -4 dBm @ 8.1-10 GHz、LO-RF isolation 30 dB。2.6-4.6-GHz寬頻CMOS發射放大器,量測結果小訊號增益為9.2-11.9 dB,OP1dB為-3.4-0.3 dBm、PAE為5.8-13.9% @ OP1dB、η為6.1-14.3% @ OP1dB。6-10-GHz寬頻CMOS發射放大器,量測結果小訊號增益為7.6-10.5 dB、OP1dB為2.8- 6.1 dBm、PAE為8.8-17.6% @ OP1dB、η為9.7-21.1% @ OP1dB。
This thesis divides into three parts, all designed RFICs applied to DS-UWB transceiver is included. The first part presents 3-5-GHz and 6-10-GHz broadband CMOS low noise amplifier, the second part is 3-5-GHz and 6-10-GHz broadband CMOS folded-cascode mixer, and the third part is 3-5-GHz and 6-10-GHz broadband CMOS transmitting amplifier. The RFICs included in the first and the second part are designed on TSMC 0.18-μm 1P6M CMOS process, and the third part is on UMC 0.18-μm 1P6M CMOS process. The RFICs applied to 3-5-GHz band is measured on FR-4 PC board, and for 6-10-GHz band is on wafer.
3-5-GHz broadband CMOS low noise amplifier is the combination of a common-source transistor and a buffer. Measured results show a noise figure of 4.8 -6.1 dB, and a gain of 7.1-9 dB. 6-10-GHz broadband CMOS low noise amplifier is implemented by two topologies, respectively: Only one single-stage cascode amplifier, and two single-stage cascode amplifier cascaded. Measured results exhibit a noise figure of 4.6 -5.1 dB, and a gain of 6-8.4 dB; the other is a noise figure of 5.3-6.2 dB, and a gain of 11-13.8 dB. 3-5-GHz broadband CMOS folded-cascode mixer is measured as a conversion gain of -1.5-2.5 dB @ 3 -3.99 GHz & -2.6 -0.9 dB @ 4.01-5 GHz, an input P1dB of -9.5- -10.5 dBm @ 3-3.99 GHz & -8.5- -7.5 dBm @ 4.01-5 GHz, a LO-RF isolation of 33.8 dB, and the required LO power is only -10 dBm. 6-10-GHz broadband CMOS folded-mirror mixer is measured as a conversion gain of -1.8-0.8 dB @ 6 - 7.9 GHz & -3.3- -0.4 dB @ 8.1-10 GHz, and an input P1dB ~ -6 dBm @ 6-7.9 GHz & -4 dBm @ 8.1-10 GHz, a LO-RF isolation of 30 dB, and the required LO power is only -3 dBm. 2.6-4.6-GHz broadband CMOS TA is measured as a small signal gain of 9.2-11.9 dB, an OP1dB of -3.4- 0.3 dBm, a PAE of 5.8-13.9% @ OP1dB, and aηof 6.1-14.3% @ OP1dB. 6-10-GHz broadband CMOS TA is measured as a small signal gain of 7.6-10.5 dB, an OP1dB of 2.8-6.1 dBm, a PAE of 8.8-17.6% @ OP1dB, and ηof 9.7-21.1% @ OP1dB.
[1] http://www.uwbforum.org/
[2] S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE, vol. 92, no. 2, pp. 295-311, Feb. 2004.
[3] www.eurasip.org/content/Eusipco/IST05/papers/426.pdf
[4] S. Jose, “Design of RF CMOS power amplifier for UWB applications,” Thesis for Master of Science, Department of Electrical Engineering, Virginia Polytechnic Institute and State University, 2004.
[5] K. Siwiak, and D. McKeown, “UWB Radio Technology,” UK:Wiley, 2004.
[6] http://www.ieee802.org/15/pub/TG3a.html
[7] A. Ismail, and A. A. Abidi, “A 3.1- to 8.2-GHz Zero-IF Receiver and Direct Frequency Synthesizer in 0.18-μm SiGe BiCMOS for Mode-2 MB-OFDM UWB Communication,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2573-2582, Dec. 2005.
[8] B. Sklar, Digital Communications : Fundamentals and Applications, Prentice Hall, 2001.
[9] A. Ismail, and A. A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269-2277, Dec. 2004.
[10] A. Bevilacqua, and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec. 2004.
[11] X. Fan, E. Sanchez-Sinencio, and J. Silva-Martinez, ”A 3GHz-10GHz common gate ultrawideband low noise amplifier,” in IEEE Midwest Symp. on Circuits and Systems, pp. 631-634, Aug. 2005.
[12] H. -J. Lee, D. S. Ha, and S.S. Choi, ”A systematic approach to CMOS low noise amplifier design for ultrawideband applications,” in IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 3962-3965, May 2005.
[13] B, Razavi, T. Aytur, C. Lam, F. -R. Yang, K. -Y. Li, R. -H. Yan, H. -C. Kang, C. -C. Hsu, amd C. -C. Lee, “A UWB CMOS transceiver,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2555-2562, Dec. 2005.
[14] S. Vishwakarma, S. Jung, and Y. Joo, “Ultra wideband CMOS low noise amplifier with active input matching,” in IEEE Workshop on Ultra Wideband Systems, pp. 415-419, May 2004.
[15] P. P. Ghosh, and E. Xiao, “Design of a new CMOS low noise amplifier for ultra wide-band wireless receiver in 0.18um technology,” in IEEE Int. Conf. on Ultra-Wideband, pp. 514-519, Sep. 2005.
[16] M. Liu, J. Craninckx, N. M. Iyer, M. Kuijk, and A. Barel, “A 6.5-kV ESD protected 3-5-GHz ultra-wideband BiCMOS low noise amplifier using interstage gain roll-off compensation,” in IEEE Int. Conf. on Ultra-Wideband, pp. 525-529, Sep. 2005.
[17] C. -W. Kim, M. -S. Kang, P. -T. Anh, H. -T. Kim, and S. -G. Lee, “An ultra-wideband CMOS low noise amplifier for 3-5GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544-547, Feb. 2005.
[18] S. Smith, Microelectronic Circuits, Oxford Univ. Press, 1998.
[19] D. A. Neamen, Electronic Circuit Analysis and Design, Richard D. Irwin, 1996.
[20] B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[21] R. Ludwig, and P. Bretchko, RF Circuit Design Theory and Applications, Prentice Hall, 2000.
[22] T. -H. Lee, The Design of CMOS Radio-Frequency Integrated Circuit, Cambridge Univ. Press, 2004.
[23] C. -H. Wu, C. -H. Lee, W. -S. Chen, and S. -I. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 548-552, Feb. 2005.
[24] B. Analui, and A. Hajimiri, “Multi-pole bandwidth enhancement technique for transimpedance amplifiers,” ESSCIRC , pp. 303-306, 2002.
[25] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000.
[26] H. Samavati, H. R. Rategh, and T. -H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May 2000.
[27] L. Besser, and R. Gilmore, Practical RF Circuit Design for Modern Wireless Systems, Artech House, 2003.
[28] I. Bahl, Lumped Elements for RF and Microwave Circuits, Artech House 2003.
[29] P. Sivonen, and A. Parssinen, “Analysis and optimization of packaged inductively degenerated common-source low-noise amplifiers with ESD protection,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1304-1313, Apr. 2005.
[30] M. -D. Tsai, C. -S. Lin, C. -H. Wang, C. -H. Lien, and H. Wang, “A 0.1-23-GHz SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation technique,” in IEEE Radio Frequency Integrated Circuits Symp., pp. 417-420, 2004.
[31] Y. -H. Lee, S. -H. Lee, J. Lee, D. -S. Park, S. -H. Cheon, B. Shrestha, S. -J. Kim, G. P. Kennedy, and N. -Y. Kim, “Design of an MMIC broadband mixer with high output power using INGaP/GaAs HBT technology,” in IEEE Asia-Pacific Microwave Conf. Prof., 2005.
[32] T. Manku, G. Beck, and E. J. Shin, “A low-voltage design technique for RF integrated circuits,” IEEE Trans. on Circuits and Systems, vol. 45, no. 10, pp. 1408-1413, Oct. 1998.
[33] I. Kwon, and K. Lee, “An integrated low power highly linear 2.4-GHz CMOS receiver front-end based on current amplification and mixing,” IEEE Micro. Wireless Compon. Lett., vol. 15, no. 1, pp. 36-38, Jan. 2005.
[34] G. Giustolisi, G. Palmisano, G. Palumbo, and C. Strano, “A novel 1.5-V CMOS mixer,” in Proc. of the Symp. on VLSI, pp. 113-117, Feb. 1998.
[35] C. F. Campbell, and J. M. Beall, “Design and performance of a highly integrated wideband active downconverter MMIC,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp. 245-248, May 2001.
[36] S. -H. Lee, H. -C. Bae, S. -Y. Lee, J. Kim, B. -W. Kim, and J. -Y. Kang, “A 1-6 GHz monolithic up-conversion mixer with input/output active baluns using SiGe HBT process,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems Meeting Dig., pp. 17-20, Sept. 2004.
[37] H. Darabi, and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE Trans. Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000.
[38] M. T. Terrovitis, and R. G. Meyer, “Noise in current-commutating CMOS mixers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 772-783, Jun. 1999.
[39] Richard C. -H. Li, Key Issues in RF/RFIC Circuit Design, 2005.
[40] C. B. Sia, B. H. Ong, K. S. Yeo, J. -G. Ma, and M. A. Do, “Accurate and scalable RF interconnect model for silicon-based RFIC applications,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 9, pp. 3035-3044, Sep. 2005.