| 研究生: |
鄭憲隆 Cheng, Shiang-Lun |
|---|---|
| 論文名稱: |
基於賽局理論的工業園區廠際熱整合策略 A Game-Theory Based Total-Site Heat Integration Strategy |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 逐步熱整合 、廠際熱交換 、賽局理論 、VCM程序 、工業煉油程序 |
| 外文關鍵詞: | inter-plant heat integration, sequential procedure, game theory, VCM process, refinery process |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目標為根據賽局理論發展出可供決定工業園區廠際熱整合策略的數學規劃模式。過去有關多廠熱整合的研究大多僅考慮整體最大能源節省量,由於可能會使各廠獲利不平均,以致大多數無法實行。但若分析各工廠間的競合關係,廠際熱整合成功的關鍵應為能否找出在每一工廠自身利益最大化的前提下達到整體利益最大化的熱交換架構。在本研究中,我們將賽局理論中奈許平衡限制式整合在逐步最佳化的數學規劃模式中,具體言之,我們採用的設計步驟如下(一)計算所有工廠整體最少公用流體花費,(二)在維持第一步驟所得整體公用流體用量及奈許平衡限制式的前提下,計算廠際熱交換量及交易價格,(三)在維持前述公用流體消耗量及廠際熱交換量限制下決定最少廠內及廠際最佳配對及對應熱交換量,(四)建構達成最佳配對的最大平均化成本節省幅度的熱交換網路。最後也將上述設計方法應用於氯乙烯單體(VCM)程序與工業煉油程序中。
A mathematical programming approach is proposed in this paper to synthesize proper inter-plant heat integration schemes on the basis of game theory. Notice that almost all conventional strategies focused upon recovering maximum energy from the integrated plants. Although the largest overall benefit can be realized with such strategies, the resulting cost savings may be distributed unevenly (or even unfairly) among all involved parties. This undesirable feature often rendered the aforementioned “optimal” schemes infeasible. Therefore, the key to successful application of any inter-plant heat integration scheme in practice is to allow every plant to maximize its own saving while striving for the highest overall benefit at the same time.
A sequential design procedure is followed in this study. In particular, each heat integration scheme is generated in four consecutive steps to determine (1) the minimum overall utility cost, (2) by maintaining the first step overall utility usage and Nash equilibrium constraints, the heat flows between every pair of plants and also their fair trading prices are then calculated accordingly, (3) the second step utility usage and inter-plant heat flow, is also maintained to decide the minimum number of heat-exchanger units, and (4) the heat exchanger networks in maximum total annual cost saving is later constructed. Finally, this sequential procedure has been successfully applied to the vinyl chloride monomer (VCM) process and refinery process.
Anita, K. K. Heat Integration between Two Biodiesel Processes Using a Simple Method. Energy & Fuels, 22, 1972-1979, 2008.
Audet, C., Belhaiza, S. & Hansen, P. Enumeration of All the Exterme Equilibria in Game Theory: Bimatrix and Polymatrix Games. Journal of Optimization Theory and Applications, 129, 349-372, 2006.
Bagajewicz, M. J. & Rodera, H. Multiple Plant Heat Integration in a Total Site. AIChE Journal, 48, 2255-2270, 2002.
Bagajewicz, M. J. On the use of heat pimps in total site heat integration. Computers and Chemical Engineering, 27, 1707-1719, 2003.
Chew, I. M. L., Tan, R., Foo, D. C. Y. & Chiu, A. S. F. Game Theory Approach to the Analysis of Inter-plant Water Integration in an Eco-Industrial Park. Journal of Cleaner Production, 17, 1611-1619, 2009.
Ciric, A. R. & Floudas, C. A. Heat exchanger network synthesis without decomposition. Computers and Chemical Engineering, 15, 385-396, 1911.
Douglas, J. M. Conceptual Design of chemical Processes. McGraw-Hill, Singapore, 1988.
Floudas, C. A., Ciric, A. R. & Grossmann, I. E. Automatic synthesis of optimum heat exchanger network configurations. American Institute of Chemical Engineers Journal, 32, 276-290, 1986.
Floudas, C. A. & Ciric, A. R. Strategies for overcoming uncertainties in heat exchanger network synthesis. Computers and Chemical Engineering, 13, 1133-1152, 1989.
Goršek, A., Glavič, P. & Bogataj, M. Design of the optimal total site heat recovery system using SSSP approach. Chemical Engineering and Processing, 45, 372-382, 2006.
Ji, S. C. & Bagajewicz, M. J. Design of Crude Distillation Plants with Vacuum Units. II. Heat Exchanger Network Design. Industrial and Chemistry Research, 41, 6100-6106, 2002.
Lakshmanan, A., Rooney, W. C. & Biegler, L. T. A case study for reactor network synthesis: the vinyl chloride process. Chemical Engineering Department, 23, 479-495, 1999.
Miller, D. A. & Zucker, S. W. Copositive-plis Lemke algorithm solves polymatrix games. Operations Research Letters, 10, 285-290, 1991.
Nash, J. F. Equilibrium Points in n-Person Games. Proceedings of the National Academy of Science of the United States of America, 36, 48-49, 1950.
Nash, J. F. Non-Cooperative Games. The Annals of Mathematics, 54, 286-295, 1951.
Papoulias, S. A. & Grossmann, I. E. A structural optimization approach in process synthesis – II. Heat recovery networks. Computers and Chemical Engineering, 7, 707-721 ,1983.
Quintas, L. G. A Note on Polymatrix Games. International Journal of Game Theory, 18, 261-272, 1989.
Ren, T., Patel, M. & Blok, K. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy, 31, 425-451, 2006.
Sorin, M. & Hammache, A. A new thermodynamic model for shaftwork targeting on total site. Applied Thermal Engineering, 25, 961-972, 2005.
von Neumann, J. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100, 295-399, 1928.
von Neumann, J. & Morgenstern, O. Theory of Games and Economic Behavior. Wiley, New York, 1944.
Wang, T. Process Simulation Integration and Optimization of Blending of Petrodiesel with Biodiesel. M.S. Thesis, Chemical Engineering, Texas A&M University, 2008.