| 研究生: |
莊子賢 Chuang, Tzu-Hsien |
|---|---|
| 論文名稱: |
夾竹桃麻素,一種NADPH氧化酶抑製劑,引起電壓調控鈉離子電流增強的證據 Evidence for the augmentation of voltage-gated Na+ current exerted by apocynin, known to be an NADPH-oxidase inhibitor |
| 指導教授: |
吳勝男
Wu, Sheng-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 夾竹桃麻素 、NADPH依賴性氧化酶 、電壓門控Na+電流 、持續Na+電流 、電流動力學 、電壓依賴性遲滯現象 、電興奮性細胞 |
| 外文關鍵詞: | apocynin, NADPH-dependent oxidase, voltage-gated Na+ current, persistent Na+ current, current kinetics, voltage-dependent hysteresis,, electrically excitable cell |
| 相關次數: | 點閱:45 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
夾竹桃麻素(aPO, 4'-hydroxy-3'-methoxyacetophenone)被認為是一種可滲透細胞的抗炎酚類化合物,可作為NADPH依賴性氧化酶(NOX)的抑製劑。然而,aPO直接與細胞膜離子通道相互作用以改變興奮性細胞中離子電流的幅度以及門控的機制仍不清楚。因此,我們試圖探索aPO對垂體細胞GH3中離子電流的任何修飾。在全細胞電流記錄中,發現GH3細胞暴露於aPO會刺激不同效力的電壓門控:峰值Na+電流(INa(T))和持續Na+電流(INa(P))。aPO在GH3細胞中峰值或持續INa的差異增加所需要的EC50值估計分別為13.2及2.8μM,而其在電流失活的緩慢組分中延遲所需的KD值為3.4 μM。在細胞暴露於aPO(10 μM)期間,INa的電流-電壓關係略微向負電位轉移;然而,電流的穩態失活曲線在aPO(10 μM)存在時向右移動。在10 μM aPO存在下,峰值INa失活狀態的恢復速度增加。在aPO持續存在的情況下,進一步應用rufinamide或ranolazine有效地逆轉了aPO刺激增加的INa。在methylglyoxal或superoxide dismutase預處理的細胞中,aPO對峰值INa的刺激作用仍然有效。通過使用不同持續時間的直立等腰三角形斜坡脈衝,aPO的存在增強了在低閾值或高閾值測量的持續INa的幅度,同時在低閾值或高閾值出現的電壓依賴性遲滯現象(Hys(V))強度增加。同樣,在HL-1小鼠心肌細胞中,aPO的存在增加了INa的峰值幅度,並降低了電流的失活率及去活化率,並且進一步添加ranolazine或esaxerenone可逆轉aPO增強的INa。連同這些數據,本研究提供了一個重要但尚未確定的發現,該發現表明,儘aPO可有效抑制NOX活性,但aPO可能直接且協同地擾亂電興奮性細胞中INa的幅度、門控和Hys(V)。
Apocynin (aPO, 4’-hydroxy-3’-methoxyacetophenone) has been viewed as a cell-permeable, anti-inflammatory phenolic compound which can act as an inhibitor of NADPH-dependent oxidase (NOX). However, the mechanisms through which aPO can interact directly with membrane ion channels to modify the amplitude or gating of ionic currents in excitable cells is unclear. Hence, we intended to assess any modifications of aPO on ionic currents present in pituitary GH3 cells. In whole-cell current recordings, GH3-cell exposure to aPO was found to enhance the peak and late components of voltage-gated Na+ current (INa) with different potencies. The EC50 value of aPO needed for its differential increase in peak or persistent INa in GH3 cells was calculated to be 13.2 or 2.8 μM, respectively, while the KD value required for its retardation in the slow component of current inactivation was estimated as 3.4 μM. The current versus voltage relation of INa was shifted slightly to more negative potential during cell exposure to aPO (10 μM); however, the steady-state inactivation curve of the current was shifted in a rightward direction in its presence. Recovery of peak INa inactivation was elevated in the presence of 10 μM aPO. In continued exposure to aPO, further application of rufinamide or ranolazine reversed aPO-stimulated INa effectively. In cells incubated with methylglyoxal or superoxide dismutase, the stimulatory effect of aPO on peak INa remained unaltered. By using an upright isosceles-triangular ramp pulse of varying duration, the amplitude of persistent INa measured at low or high threshold was enhanced by the aPO presence, along with increased strength of voltage-dependent hysteresis (Hys(V)) appearing at low or high threshold. Likewise, in HL-1 murine cardiomyocytes, the aPO presence increased the peak amplitude of INa as well as decreased the inactivation or deactivation rate of the current, and further addition of ranolazine or esaxerenone reversed aPO-accentuated INa. Altogether with these data, the present study provides an important yet unidentified finding revealing that, notwithstanding its effectiveness in suppressing NOX activity, aPO may directly and concertedly perturb the amplitude, gating kinetics, and Hys(V) strength of INa residing in different types of electrically excitable cells.
1. Yang, T.; Zang, D.-W.; Shan, W.; Guo, A.-C.; Wu, J.-P.; Wang, Y.-J.; Wang, Q. Synthesis and Evaluations of Novel Apocynin Derivatives as Anti-Glioma Agents. Front. Pharmacol. 2019, 10, 951.
2. Stefanska, J.; Pawliczak, R. Apocynin: Molecular Aptitudes. Mediat. Inflamm. 2008, 2008, 1–10.
3. Petrônio, M.S.; Zeraik, M.L.; Da Fonseca, L.M.; Ximenes, V.F. Apocynin: Chemical and Biophysical Properties of a NADPH Oxidase Inhibitor. Molecules 2013, 18, 2821–2839.
4. Abliz, A.; Chen, C.; Deng, W.; Wang, W.; Sun, R. NADPH Oxidase Inhibitor Apocynin Attenuates PCB153-Induced Thyroid Injury in Rats. Int. J. Endocrinol. 2016, 2016, 8354745.
5. Du, Z.-D.; Yu, S.; Qi, Y.; Qu, T.-F.; He, L.; Wei, W.; Liu, K.; Gong, S.-S. NADPH oxidase inhibitor apocynin decreases mitochondrial dysfunction and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging model in rats. Neurochem. Int. 2019, 124, 31–40.
6. Qiu, J.; Zhao, J.; Li, J.; Liang, X.; Yang, Y.; Zhang, Z.; Zhang, X.; Fu, H.; Korantzopoulos, P.; Liu, T.; et al. NADPH oxidase inhibitor apocynin prevents atrial remodeling in alloxan-induced diabetic rabbits. Int. J. Cardiol. 2016, 221, 812–819.
7. Gimenes, R.; Rosa, C.M.; Xavier, N.P.; Campos, D.H.S.; Fernandes, A.A.H.; Cezar, M.D.M.; Guirado, G.N.; Pagan, L.U.; Chaer, I.D.; Fernandes, D.D.C.; et al. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovasc. Diabetol. 2018, 17, 15.
8. Lee, S.H.; Choi, B.Y.; Kho, A.R.; Jeong, J.H.; Hong, D.K.; Kang, D.H.; Kang, B.S.; Song, H.K.; Choi, H.C.; Suh, S.W. Inhibition of NADPH Oxidase Activation by Apocynin Rescues Seizure-Induced Reduction of Adult Hippocampal Neurogenesis. Int. J. Mol. Sci. 2018, 19, 3087.
9. Olukman, M.; Önal, A.; Çelenk, F.G.; Uyanıkgil, Y.; Çavuşoğlu, T.; Duzenli, N.; Ülker, S. Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats. Neural Regen. Res. 2018, 13, 1657–1664.
10. Hou, L.; Sun, F.; Huang, R.; Sun, W.; Zhang, D.; Wang, Q. Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson’s disease model. Redox Biol. 2019, 22, 101134.
11. Wang, K.; Zhu, Z.; Chi, R.; Li, Q.; Yang, Z.; Jie, X.; Hu, X.; Han, X.; Wang, J.; Li, B.; et al. The NADPH oxidase inhibitor apocynin improves cardiac sympathetic nerve terminal innervation and function in heart failure. Exp. Physiol. 2019, 104, 1638–1649.
12. El-Sawalhi, M.M.; Ahmed, L.A. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem. Interact. 2014, 207, 58–66.
13. Liu, J.-J.; Lu, Y.; Ping, N.-N.; Li, X.; Lin, Y.-X.; Li, C.-F. Apocynin Ameliorates Pressure Overload-Induced Cardiac Remodeling by Inhibiting Oxidative Stress and Apoptosis. Physiol. Res. 2017, 66, 741–752.
14. Bui, Q.D.; .Weisz, J. Monooxygenase mediating catecholestrogen formation by rat anterior pituitary is an estrogen-4-hydroxylase. Endocrinology 1989, 124, 1085–1087.
15. Dang, A.K.; Chaplin, N.L.; Murtazina, D.A.; Boehm, U.; Clay, C.M.; Amberg, G.C. Subplasmalemmal hydrogen peroxide triggers calcium influx in gonadotropes. J. Biol. Chem. 2018, 293, 16028–16042.
16. Colaianna, M.; Schiavone, S.; Zotti, M.; Tucci, P.; Morgese, M.G.; Bäckdahl, L.; Holmdahl, R.; Krause, K.-H.; Cuomo, V.; Trabace, L. Neuroendocrine Profile in a Rat Model of Psychosocial Stress: Relation to Oxidative Stress. Antioxid. Redox Signal. 2013, 18, 1385–1399.
17. Song, W.; Shou, W. Cardiac Sodium Channel Nav1.5 Mutations and Cardiac Arrhythmia. Pediatr. Cardiol. 2012, 33, 943–949.
18. Jiang, D.; Shi, H.; Tonggu, L.; El-Din, T.M.G.; Lenaeus, M.J.; Zhao, Y.; Yoshioka, C.; Zheng, N.; Catterall, W.A. Structure of the Cardiac Sodium Channel. Cell 2020, 180, 122–134.e10.
19. Ilatovskaya, D.V.; Pavlov, T.S.; Levchenko, V.; Staruschenko, A. ROS production as a common mechanism of ENaC regulation by EGF, insulin, and IGF-Am. J. Physiol. Physiol. 2013, 304, C102–C111.
20. Downs, C.A.; Johnsona, N.M.; Cocab, C.; Helms, M.N. Angiotensin II regulates δ-ENaC in human umbilical vein endothelial cells. Microvasc. Res. 2018, 116, 26–33.
21. Bancroft, F.C.; Tashjian, A.H. Control of the production of two protein hormones by rat pituitary cells in culture. Vitr. Cell. Dev. Biol.-Plant 1970, 6, 180–189.
22. Chang, W.T.; Wu, S.N. Activation of voltage-gated sodium current and inhibition of erg-mediated potassium current caused by telmisartan, an antagonist of angiotensin II type-1 receptor, in HL-1 atrial cardiomyocytes. Clin. Exp. Pharm. Physiol. 2018, 45, 797–807.
23. Wu, S.N.; Wu, Y.-H.; Chen, B.-S.; Lo, Y.-C.; Liu, Y.-C. Underlying mechanism of actions of tefluthrin, a pyrethroid insecticide, on voltage-gated ion currents and on action currents in pituitary tumor (GH3) cells and GnRH-secreting (GT1-7) neurons. Toxicology 2009, 258, 70–77.
24. Chang, W.-T.; Wu, S.-N. Characterization of Direct Perturbations on Voltage-Gated Sodium Current by Esaxerenone, a Nonsteroidal Mineralocorticoid Receptor Blocker. Biomedicines 2021, 9, 549.
25. So, E.C.; Wu, S.-N.; Lo, Y.-C.; Su, K. Differential regulation of tefluthrin and telmisartan on the gating charges of I Na activation and inactivation as well as on resurgent and persistent I Na in a pituitary cell line (GH (3)). Toxicol. Lett. 2018, 285, 104–112.
26. Chang, W.T.; Wu, S.N. Effectiveness of Columbianadin, a Bioactive Coumarin Derivative, in Perturbing Transient and Persistent I(Na). Int. J. Mol. Sci. 2021, 22, 621.
27. Tan, J.; Soderlund, D.M. Actions of tefluthrin on rat Nav1.7 voltage-gated sodium channels expressed in Xenopus oocytes. Pestic. Biochem. Physiol. 2011, 101, 21–26.
28. Chen, B.-S.; Lo, Y.-C.; Peng, H.; Hsu, T.-I.; Wu, S.-N. Effects of Ranolazine, a Novel Anti-anginal Drug, on Ion Currents and Membrane Potential in Pituitary Tumor GH3 Cells and NG108-15 Neuronal Cells. J. Pharmacol. Sci. 2009, 110, 295–305.
29. Gupta, T.; Khera, S.; Kolte, D.; Aronow, W.S.; Iwai, S. Antiarrhythmic properties of ranolazine: A review of the current evidence. Int. J. Cardiol. 2015, 187, 66–74.
30. Cappetta, D.; Esposito, G.; Coppini, R.; Piegari, E.; Russo, R.; Ciuffreda, L.P.; Rivellino, A.; Santini, L.; Rafaniello, C.; Scavone, C.; et al. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br. J. Pharmacol. 2017, 174, 3696–3712.
31. Suter, M.R.; Kirschmann, G.; Laedermann, C.J.; Abriel, H.; Decosterd, I. Rufinamide Attenuates Mechanical Allodynia in a Model of Neuropathic Pain in the Mouse and Stabilizes Voltage-gated Sodium Channel Inactivated State. Anesthesiology 2013, 118, 160–172.
32. Kharatmal, S.B.; Singh, J.N.; Sharma, S.S. Rufinamide Improves Functional and Behavioral Deficits via Blockade of Tetrodotoxin-Resistant Sodium Channels in Diabetic Neuropathy. Curr. Neurovasc. Res. 2015, 12, 262–268.
33. Wintergalen, N.; Thole, H.H.; Galla, H.-J.; Schlegel, W. Prostaglandin-E2 9-Reductase from Corpus Luteum of Pseudopregnant Rabbit is a Member of the Aldo-Keto Reductase Superfamily Featuring 20alpha-Hydroxysteroid Dehydrogenase Activity. JBIC J. Biol. Inorg. Chem. 1995, 234, 264–270.
34. Mukohda, M.; Okada, M.; Hara, Y.; Yamawaki, H. Methylglyoxal Accumulation in Arterial Walls Causes Vascular Contractile Dysfunction in Spontaneously Hypertensive Rats. J. Pharmacol. Sci. 2012, 120, 26–35.
35. Eid, B.G.; Abu-Sharib, A.T.; El-Bassossy, H.M.; Balamash, K.; Smirnov, S.V. Enhanced calcium entry via activation of NOX/PKC underlies increased vasoconstriction induced by methylglyoxal. Biochem. Biophys. Res. Commun. 2018, 506, 1013–1018.
36. Cannio, R.; D’Angelo, A.; Rossi, M.; Bartolucci, S. A superoxide dismutase from the archaeon Sulfolobus solfataricus is an extracellular enzyme and prevents the deactivation by superoxide of cell-bound proteins. JBIC J. Biol. Inorg. Chem. 2000, 267, 235–243.
37. Korman, C.E.; Mayergoyz, I.D. On hysteresis of ion channels. Math. Model. Nat. Phenom. 2020, 15, 26.
38. Villalba-Galea, C.A.; Chiem, A.T. Hysteretic Behavior in Voltage-Gated Channels. Front. Pharmacol. 2020, 11, 579596.
39. Yu, J.; Weïwer, M.; Linhardt, R.J.; Dordick, J.S. The Role of the Methoxyphenol Apocynin, a Vascular NADPH Oxidase Inhibitor, as a Chemopreventative Agent in the Potential Treatment of Cardiovascular Diseases. Curr. Vasc. Pharmacol. 2008, 6, 204–217.
40. Zhao, Z.; Fefelova, N.; Shanmugam, M.; Bishara, P.; Babu, G.J.; Xie, L.-H. Angiotensin II induces afterdepolarizations via reactive oxygen species and calmodulin kinase II signaling. J. Mol. Cell. Cardiol. 2011, 50, 128–136.
41. Muñoz, M.; López-Oliva, M.E.; Rodríguez, C.; Martínez, M.P.; Sáenz-Medina, J.; Sánchez, A.; Climent, B.; Benedito, S.; García-Sacristán, A.; Rivera, L.; et al. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biol. 2020, 28, 101330.
42. Armstrong, C.M.; Bezanilla, F. Currents Related to Movement of the Gating Particles of the Sodium Channels. Nat. Cell Biol. 1973, 242, 459–461.
43. Stühmer, W.; Conti, F.; Suzuki, H.; Wang, X.; Noda, M.; Yahagi, N.; Kubo, H.; Numa, S. Structural parts involved in activation and inactivation of the sodium channel. Nat. Cell Biol. 1989, 339, 597–603.
44. Liu, F.; Fan, L.M.; Michael, N.; Li, J. In vivo and in silico characterization of apocynin in reducing organ oxidative stress: A pharmacokinetic and pharmacodynamic study. Pharmacol. Res. Perspect. 2020, 8, e00635.
45. Henríquez-Olguín, C.; Díaz-Vegas, A.; Utreras-Mendoza, Y.; Campos, C.; Arias-Calderón, M.; Llanos, P.; Contreras-Ferrat, A.; Espinosa, A.; Altamirano, F.; Jaimovich, E.; et al. NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout. Front. Physiol. 2016, 7, 282.
46. Nasuti, C.; Gabbianelli, R.; Falcioni, M.L.; Di Stefano, A.; Sozio, P.; Cantalamessa, F. Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 2007, 229, 194–205.
47. Zybura, A.; Hudmon, A.; Cummins, T.R. Distinctive Properties and Powerful Neuromodulation of Na(v)1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021, 10, 1595.