| 研究生: |
謝耀郁 Hsieh, Yao-Yu |
|---|---|
| 論文名稱: |
侷限於次微米薄膜內DNA分子之泳動及鬆弛行為以及蒸發作用所致之DNA組裝 Motion and Relaxation Behavior of DNA Molecules Confined within Submicron Film and Evaporation-Driven DNA Assembly |
| 指導教授: |
魏憲鴻
Wei, Hsien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 189 |
| 中文關鍵詞: | 電泳 、侷限效應界面薄膜 、DNA拉伸以及鬆弛 、表面蠕動 、界面活性劑鉤附作用 、自組裝 、極化 |
| 外文關鍵詞: | polarization, interfacial confinement, DNA stretching and relaxation, electrophoresis, anchoring by surface surfactants, surface reptation, self-assembly |
| 相關次數: | 點閱:84 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文在微尺度下以實驗研究DNA分子運動情形。本論文可分成四部份。前三部份(第三,第四以及第五章)探討以電場驅動DNA分子以及其動力行為。我們在微流道內製造一個幾乎貼近管壁的扁長型油珠或氣泡,藉此來產生一個次微米薄膜對DNA分子造成阻礙以及侷限效應,由此效應我們觀察DNA的形態變化和泳動行為。最後一部份(第六章),我們以蒸發溶液驅使DNA分子沉積和自組裝。
本論文第三章,我們藉由產生一個幾乎貼近管壁的扁長型油珠來研究DNA分子被侷限在此薄膜內之運動情形。我們首先以電場實現DNA之拉伸,並且發現拉伸DNA分子因為與基板表面之界面活性劑鉤附而呈現不同型態。此外,我們藉由測量DNA分子的鬆弛時間來探討DNA大小和基板表面條件如何影響其鬆弛動力。
本論文第四章,我們使用相同於第三章的實驗架構。而此部分是以直流電場驅動DNA進入薄膜後並馬上切換至交流電場,我們發現這些DNA分子會往其載入的反方向泳動並有像是蠕動的行為。我們測量泳動速度的時間平均,其結果顯示較大的DNA分子泳動較慢於小DNA分子,這樣的非零時間平均之泳動現象並不是來自於介電泳,然而,他們可能來自於電雙層中相反電荷離子之電場誘發極化效應所產生的淨偶極電荷,並且產生非零時間平均之庫倫力。
本論文第五章,我們延續第三章的實驗架構來產生兩個不同的系統。第一個系統,我們添加帶高正電之奈米片板或次微米膠體粒子於DNA溶液中,並觀察DNA分子於電場下受這些粒子影響的行為。我們觀察到DNA分子不僅會更靠近,而且會與奈米片板形成聚集。這個現象可能來自於類似同性電相吸引作用造成奈米片板吸附在帶負電的DNA上。如同膠體粒子的效應我們發現DNA分子可被鉤附於奈米片板上,並於通過薄膜後有拉伸、纏繞的行為。第二個系統中,我們以氣泡取代油珠來觀察DNA分子穿過或是繞過氣泡邊緣的現象。
本論文第六章,我們將DNA液珠置於基材上,並觀察DNA分子於蒸發後的沉積和組裝現象。當氣泡完全蒸發並退水後,我們觀察DNA分子於基材上形成環狀沉積。甚至於特定基材以及界面活性劑濃度條件下,DNA於此環狀沉積內有聚集成分子束的情形。
本論文描述由上述各種效應所產生極為豐富的DNA分子之運動行為,這些現象包含因為侷限效應造成DNA分子構形的改變 (第三、第四以及第五章)、DNA分子與界面活性劑或膠體粒子之間複雜的交互作用(第三、第四、第五以及第六章)、DNA分子極化效應造成不尋常的泳動(第四章)、DNA分子的自組裝(第六章)。藉由以上的發現,我們提供了DNA的分離、單一高分子的操控技術以及巨分子的直接組裝等應用上的可能性。
Abstract
In this thesis, we conduct experimental study on the motion of DNA molecules at microscales. The main body of this thesis consists of four parts. The first three parts (Chapters 3,4, and 5) are devoted to the electric-field-driven motion of DNA molecules and their chain dynamics. In this case, we use closely fitting oil slugs or air bubbles in microchannels to create confinement effects or obstacles to DNA molecules. We observe how DNA molecules deform and drift under the influence of these effects. In the last part (Chapter 6), we report evaporation-driven deposition and self assembly phenomena of DNA molecules.
In Chapter 3, we study the motion of DNA molecules confined within the film created by a closely fitting oil slug. We first reveal stretching of these confined DNA molecules by electric fields. We also find that stretched DNA molecules can exhibit various chain configurations due to their anchoring to surface surfactants. In addition, we measure the relaxation time of these DNA molecules and discuss how their relaxation dynamics are influenced by the size of DNA and surface conditions.
In Chapter 4, we employ the same setup as in Chapter 3. Here DNA molecules are subjected to an ac field right after being injected into the film with a dc field. We find, surprisingly, that these DNAs can drift toward the injection end of the slug and exhibit reptation-like behavior. The time-averaged drift velocity is also measured. The result reveals that larger DNAs drift slower than smaller ones. Such non-vanishing time-averaged phenomena are not due to dielectrophoresis. Rather, they could be resulted from the net dipole charge due to field-induced polarization of counterions within the electric double layer and hence from the non-vanishing time-averaged Coulomb force created by this charge.
In Chapter 5, we extend our setup in Chapter 3 to two different systems. In the first system, we add highly positively-charged Nano Silicate Platelets (NSP) or submicron colloids to the DNA solution and observe how DNA molecules behave in electric fields under the influence of these particles. In the presence of NSP, we observe that DNA molecules not only become more compact but also form aggregates with NSP. The phenomena are perhaps attributed to like-charge attraction rising from the absorption of NSP onto negatively charged DNA. As for the effect of colloidal particles we find that DNA molecules can be hooked by the particles, undergo stretching, or exhibit reptation as moving through the film. In the second system, instead of oil slug, we employ an air bubble to observe the dynamics of DNA molecules when they are crossing or passing around the bubble.
In Chapter 6, we place a droplet of a DNA solution on a substrate and observe how DNA molecules are deposited or assembled on the substrate when the droplet is evaporating. We observe that DNA molecules can forms rings after droplet retreats and is completed evaporated, inside these rings, DNA molecules can aggregate into bundles, depending on the condition of the substrate and the surfactant concentration.
This thesis basically reveals rich phenomena of DNA molecules due to various effects. These phenomena involve conformation changes of DNA due to confinement effects (Chapters 3, 4, and 5), complex interactions between DNA and other substances such as surfactants and colloids (Chapters 3, 4, 5 and 6), the unusual drift of DNA due to polarization effects (Chapter 4), and assembly of DNA molecules (Chapter 6). Our finding could have potential applications in DNA fractionation, single-molecule manipulation of polymers, and direct assembly of macromolecules.
參考文獻
Arvanitidou, E., Hoagland, D.,Chain-Length Dependence of the Electrophoretic Mobility in Random Gels, Physial Review Letters, 67, 1464-1466, 1991.
Bakajin, Duke, T. A. J., Chou, C. F., Chan, S. S., Austin, R. H., Cox, E. C., Electrohydrodynamic Stretching of DNA in Confined Environments, Phys. Rev. Lett, 80, 2737-2740, 1998.
Balducci, A., Hsieh, C. C., Doyle, P. S., Relaxation of Stretched DNA in Slitlike Confinement, Physial Review Letters, 99, 238102, 2007.
Bensimon, A., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., Bensimon, D., Alignment and Sensitive Detection of DNA by a Moving Interface, Science, 265, 2096-2098, 1994.
Besteman, K., Van Eijk, K., Lemay, S. G., Charge Inversion Accompanies DNA Condensation by Multivalent Ions, Nature Physics, 3, 641-644, 2007.
Duffy, D. C., McDonald, J. C., Schueller, O. J. A., Whitesides, G. M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Anal. Chem., 70, 4974-4984, 1998.
Duguid, J., Bloomfield, V. A., Benevides, J., Thomas, G. J., Raman Spectroscopy of DNA-Metal Complexes. 1. Interactions and Conformational Effects of the Divalent Cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd, Biophys J., 65, 1916-1928, 1993.
Ferree, S., Blanch, H. W., Electrokinetic Stretching of Tethered DNA, Biophysical Journal, 85, 2539-2546, 2003.
Han, J., Craighead, H. G., Separation of Long DNA Molecules in a Microfabricated Entropic Trap Array, Science, 288, 1026-1029, 2000.
Han, J., Turner, S. W., Graighead, H. G., Entropic Trapping and Escape of Long DNA Molecules at Submicron Size Constriction, Physial Review Letters, 83, 1688-1691, 1999.
Huang, L. R., Tegenfeldt, J. O., Kraeft, J. J., Sturm, J. C., Austin, R. H., Cox, E. C., A DNA Prism for High-Speed Continuous Fractionation of large DNA Molecules. Nature Biotech., 20, 1048-1051, 2002.
Juang, Y. J., Wang, S., Hu. X., Lee, L. J., Dynamics of Single Polymers in a Stagnation Flow Induced by Electrokinetics, Physial Review Letters, 93, 268105, 2004.
Kedem, O., Katchalsky, A., Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes, Biochim. Biophys. Acta, 27, 229-246, 1958.
Kim, J. H., Shi, W. X., Larson, R. G., Methods of Stretching DNA Molecules Using Flow Fields, Langmuir, 23, 755-764, 2007
Kudo, H., Suga, K., Fujihira, M., An Effect of Protruding Ends of λDNA on its Adsorption onto Hydrophobic Solid Surfaces during Molecular Combing, Chemical Letters, 36, 298-299, 2007.
Lambert, O., Letellier, L., Gelbart, W. M., Rigaud, J. L., DNA Delivery by Phage as a Strategy for Encapsulating Toroidal Condensates of Arbitrary Size into Liposomes, Biophsics, 97, 7248-7253, 2000.
Larson, J. W., Yantz, G. R., Zhong, Q., Charnas, R., D’Antoni, C. M., Gallo, M. V., Gillis, K. A., Neely, L. A., Phillips, K. M., Wong, G. G., Gullans, S. R., Gilmanshin, R., Single DNA Molecule Stretching in Sudden Mixed Shear and Elongational Microflows, Lab on a Chip, 6, 1187–1199, 2006.
Lee, J., Kim, C. J. Surface-Tension-Driven Microactuation Based on Continuous Electrowetting, Journal of Microelectromechanical Systems, 9, 171-180, 2000.
Li, B., Fang, X., Luo, H., Petersen, E., Seo, Y. S., Samuilov, V., Rafailovich, M., Sokolov, J., Gersappe, D., Chu, B. Influence of Electric Field Intensity, Ionic Strength, and Migration Distance on The Mobility and Diffusion in DNA Surface Electrophoresis, Electrophoresis, 27, 1312-1321, 2006.
Li, L., Larson, R. G., Sridhar, T., Brownian dynamics simulations of dilute polystyrene solutions, Journal of Rheology, 44, 291-322, 2000.
Li, L., and Larson, R., Excluded Volume Effects on the Birefringence and Stress of Dilute Polymer Solutions in Extensional Flow, Rheol. Acta, 39, 419-427, 2000.
Meagher, R. J., Won, J. I., McCormick, L. C., Nedelcu, S., Bertrand, M. M., Bertram, J. L., Drouin, G., Barron, A. E., Slater, G. W., End-Labeled Free-Solution Electrophoresis of DNA, Electrophoresis, 26, 331-350, 2005.
Maier, B., Seifert, U., Elastic Response of DNA to External Electric Fields in Two Dimensions, Europhysics Letters, 60, 622-628, 2002.
Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., Slegtenhorst, M. V., Wolfe, J., Povey, S., Beckmann, J. S., Bensimon, A., Dynamic Molecular Combing: Stretching the Whole Human Genome for High-Resolution Studies, Science, 277, 1518-1523, 1997.
Perkins, T. T., Smith, D.E., Chu, S., Single Polymer Dynamics in an Elongational Flow, Science, 276, 2016-2021, 1997.
Perkins, T. T., Smith, D. E., Larson, R. G.; Chu, S., Stretching of a Single Tethered Polymer in a Uniform Flow, Science, 268, 83-87, 1995.
Petit, C. A. P., Carbeck, J. D., Combing of Molecules in Microchannels (COMMIC): A Method for Micropatterning and Orienting Stretched Molecules of DNA on a Surface, Nano Letters, 3, 1141-1146, 2003.
Rubinstein, M., Colby, R. H., Polymer Physics, Oxford University Press, Oxford , 2003.
Schwartz, D. C., Cantor, C. R., Separation of Yeast Chromosome-Sized DNAs by Pulsed Field Gradient Gel Electrophoresis, Cell, 37, 67-75, 1984.
Stokes, R. J., Evans, D. F., Fundamentals of Interfacial Engineering, Wiley-VCH, New York, 1997.
Tanaka H. J., Coarsening Mechanisms of Droplet Spinodal Decomposition in Binary Fluid Mixtures, Chemical Physics, 105, 10099-10114, 1996.
Teraoka, I., Polymer Solutions, John Wiley & Sons, New York, 2002.
Tokarz, M., Akerman, B., Olofsson, J., Joanny, J. F., Dommersnes, P., Orwar, O., Single-File Electrophoretic Transport and Counting of Individual DNA Molecules in Surfactant Nanotubes, Proc. Natl. Acad. Sci., 102, 9127-9132, 2005.
Wong, P. K., Lee, Y. K., Ho, C. M., Deformation of DNA Molecules by Hydrodynamic Focusing, J. Fluid Mech, 497, 55-65, 2003.
Zimmermann, R. M., Cox, E. C., DNA Stretching on Functionalized Gold Surface, Nucleic Acids Research, 22(3), 492-497, 1994.
王鳳英,界面活性劑的原理與應用,臺北巿,高立出版,1996。
黃憲達,台聯大生命科學課程改進計畫¬:分子生物學網站,http://www.life.nctu.edu.tw/~mb。
陸駿逸,淺介軟物質中不尋常的靜電作用,台灣大學化學系
張家溥,微液珠操控技術於含多種尺度為流體系統之應用:以表面特性操縱微朱運動及利用次微米薄膜控制DNA動態拉伸之研究,碩士論文,國立成功大學,2007。
謝書府,藉此微米界面構造侷限效應操控單分子DNA之研究:以電荷動力方法實現長鏈DNA分子之熵致捕捉、分子梳、及動態組裝之新微流體平台,碩士論文,國立成功大學,2008。