簡易檢索 / 詳目顯示

研究生: 林郁男
Lin, Yu-Nan
論文名稱: 過自由度機械臂之保守剛度轉換
The Conservative Stiffness Mappings of Redundant Manipulators
指導教授: 黃金沺
Huang, Chin-tien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 60
中文關鍵詞: 過自由度剛度轉換
外文關鍵詞: stiffness, redundant
相關次數: 點閱:77下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機械臂在今日工業及社會上的使用已愈來愈廣泛,為了提高機械臂的靈活度、使用壽命或達到某些特定要求等,所以我們增加了機械臂的自由度來解決這些問題;除此之外,我們亦需要一套良好的控制理論來提高機械臂的精確性、增加系統強健性以及降低外界雜訊干擾,剛度控制即為其中一種。
    Salisbury提出了著名的剛度矩陣轉換式,然近年來被發現該轉換式無法能量守恆的錯誤,並提出新的保守剛度矩陣轉換式(CCT)。提出該式以來,平面三自由度及空間六自由度的串、並聯式機械臂都已證實其CCT的正確性。本文進一步將CCT的概念應用到過自由度機械臂上,並使用Pseudoinverse來解決非方陣的反矩陣問題,且藉由機構的對偶原理來討論過自由度機械臂的對偶並聯式機械臂;觀察數值模擬的結果,比較傳統剛度矩陣轉換和CCT矩陣轉換的差異。
    由平面4R及空間7R的串聯式機械臂和對偶的平面4RPR、空間7SPS並聯式機械臂的數值模擬結果可知,傳統剛度矩陣轉換仍無法達到能量守恆,而CCT則可得到能量守恆的正確結果。

    Manipulators have been widely used for decades. In order to improve the flexibility of manipulators and to achieve certain tasks, we have to increase the degree of freedom of manipulators and use the so-called redundant manipulators. In addition, good control algorithms are needed to improve the accuracy of manipulators and to reduce the interference of miscellaneous signals from the environment. Stiffness control is one of the well-known control strategies, mainly used in assembly tasks. Stiffness mapping is an essential operation for stiffness control.
    The widely used formula of stiffness mapping was first proposed by Salisbury. It was then discovered that Salisbury’s formulation did not obey the low of energy conservation. A conservative congruence transformation (CCT) has been proposed to correct Salisbury’s formulation. Research in the past few years has confirmed the correctness of the CCT in non-redundant serial and parallel manipulators. In this thesis, CCT is applied to redundant manipulators. Pseudoinverse is used to deal with the inverse of non-square matrices. The dual parallel manipulators of redundant serial manipulators are also discussed. The conventional stiffness mapping and the CCT are compared in the numerical simulations of two redundant serial manipulators and their dual parallel manipulators.
    According to the numerical simulations of planar 4R and spatial 7R serial manipulators and their dual parallel manipulators, planar 4RPR and spatial 7SPS manipulators, CCT give the accurate results that obey the law of energy conservation. On the other hand, the results from the conventional stiffness mapping do not obey the law of energy conservation.

    摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 符號說明 Ⅸ 第一章 緒言 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 3 1-4 本文架構 3 第二章 基本觀念 4 2-1 Generalized Inverse & Pseudoinverse 4 2-1-1 定義 4 2-1-2 Generalized Inverse之性質 5 2-1-3 Pseudoinverse之性質 7 2-2 D-H齊次轉換矩陣 8 2-3 Conventional Jacobian矩陣的推導 11 2-3-1 串聯式機械臂 11 2-3-2 並聯式機械臂 13 第三章 串聯式過自由度機械臂之剛度分析與模擬 16 3-1 過自由度4R串聯式機械臂之分析 16 3-1-1 位置分析 18 3-1-2 速度分析 20 3-1-3 力量分析 23 3-2 過自由度機構之保守剛度矩陣轉換的推導 24 3-3 平面4R串聯式機械臂之數值模擬 26 3-4 空間7R串聯式機械臂之數值模擬 30 3-5 過自由度機構之 矩陣對稱性 36 第四章 過自由度串聯式機械臂之對偶並聯式機構之剛度分析與模擬 40 4-1 對偶關節與對偶鏈 40 4-1-1 對偶關節 40 4-1-2 對偶鏈 41 4-2 串、並聯式機械臂之對偶 42 4-3 平面4RPR並聯式機械臂之數值模擬 46 4-4 空間7SPS並聯式機械臂之數值模擬 49 4-5 並聯式機械臂 矩陣之對稱性 55 第五章 結論與未來展望 57 5-1 結論 57 5-2 未來展望 58 參考文獻 59

    1. Chen, S. F., and Kao. I., 1998, “Simulation of Conservative Properties of Stiffness Matrices in Congruence Transformation,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Canada.
    2. Chen, S. F., and Kao. I., 1999, “The Conservative Congruence Transformation of Stiffness Control in Robotic Grasping and Manipulation,” the International Symposium of Robotics Research, Snowbird, USA, pp. 7-14.
    3. Dimentberg, F. M., 1965, “The screw calculus and its applications in mechanics,” Technical Report FTD-HT-23-1632-67, US Department of Commerce Translation.
    4. Duffy, J., 1996, Statics and Kinematics with Applications to Robotics, Cambridge University Press, Cambridge University Press.
    5. Gilbert Strang, 1980, Linear Algebra and Its Applications, AcaDemic Press, Inc., New York.
    6. Gosselin, C., 1990, “Stiffness Mapping of Parallel Manipulators,” IEEE Trans. Robot. Autom., Vol. 6, pp. 377-382.
    7. Griffis, M., and Duffy, J., 1993, “Global Stiffness Modeling of a Class of Simple Compliant Couplings,” Mech. Mach. Theory, Vol. 28, No. 2, pp. 207-224
    8. Huang, C. and Kao, I., 2001, “Geometrical Interpretations of the Conservative Congruence Transformation for Serial Manipulators via Screw Theory,” Proceedings of the 10th IFRR International Symposium of Robotics Research, Lorne, Australia, Nov. 9-12, 2001.
    9. Kao, I. and Ngo, C., 1999, “Properties of Grasp Stiffness Matrix and Conservative Control Strategy,” the International Journal of Robotics Research, Vol. 18, No. 2, pp. 159-167.
    10. Kerr, J. R., 1984, “An Analysis of Multi-fingered Hand,” Ph. D. Dissertation, Stanford University, California.
    11. Kerr J., and Roth B., 1986, “Analysis of Multifingered Hands,” the International Journal of Robotics Research, Vol. 4, No. 4, pp. 3-17.
    12. Kerr, D. R., 1989, “Analysis, Properties, and Design of a Stewart Platform Transducer,” ASME J. Mech. Transm. Autom. Des., Vol. 111, pp. 25-28.
    13. Nakamura, Yoshihiko., 1991, Advanced Robotics: Redundancy and Optimization, Addison Wesley Publishing Company, Inc., USA.
    14. Salisbury, J. K., 1980, “Active Stiffness Control of a Manipulator in Cartesian Coordinates,” Proceeding of the IEEE Conference on Decision and Control, pp. 87-97.
    15. Tsai, L. W., 1999, Robot Analysis: the Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, Inc., New York.
    16. 洪偉恆,2002,並聯式機械臂新保守剛度轉換之研究,九十一年六月,國立成功大學機械工程研究所碩士論文。
    17. 高子翔,2001,機械臂保守剛性矩陣轉換之模擬,九十年六月,國立成功大學機械工程研究所碩士論文。

    下載圖示 校內:立即公開
    校外:2003-07-18公開
    QR CODE