| 研究生: |
陳衍吉 Chen, Yen-Ji |
|---|---|
| 論文名稱: |
雙功能梯度壓電條板之第III型破壞分析 Mode III Fracture Analysis of Embedded Cracks in Two Bonded Functionally Graded Piezoelectric Strips |
| 指導教授: |
褚晴暉
Chue, Ching-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 奇異積分方程式 、功能梯度壓電材料 、強度因子 、能量密度因子 |
| 外文關鍵詞: | Intensity factors, Singular integral equations, Energy density factors, Functionally graded piezoelectric material |
| 相關次數: | 點閱:128 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的在於分析含裂縫功能梯度壓電條板接合之面外問題 。壓電材料之極化方向為六方對稱型,材料梯度假設為指數型函數。利用Fourier轉換法,可將問題轉變成一組奇異積分方程式,再藉由Gauss-Chebyshev積分公式進行數值求解,並從數值解中探討邊界條件、裂縫長度及非均質材料參數對於強度因子和能量密度因子的影響。相關的退化問題也於文中有詳細的討論。
研究結果顯示,應力強度因子與電位移強度因子分別僅與其外加之機械負載與電負載、裂縫長度及位置有關,且彼此為非耦合。只要外加機械及電負載為相同形式,不可滲透型及滲透型裂縫所對應的應力強度因子是相同的。至於較大的強度因子會發生在材料較強的裂縫尖端上,這結果與現有文獻一致。強度因子將隨著裂縫位置所在處的材料性質梯度遞增減而提高或降低,且邊界條件對於強度因子的影響甚為強烈,裂縫離邊界的距離漸增,邊界的影響愈趨緩,另一方面,強度因子也會因為相鄰材料的梯度變化而有不同的結果,當其非均質材料參數分別趨近於正負極限值時,可以分別退化成為簡單的不同邊界問題。而強度因子隨著裂縫中心距離變大而降低,因此裂縫中心距離,板條的邊界條件及接合鄰近材料的強度也影響著強度因子的大小。
本文使用能量密度因子作為裂縫成長之驅動力,研究結果顯示較大的能量密度因子會發生在材料較弱的裂縫尖端上,然而功能梯度材料的材料參數Scr仍屬未知,故目前尚無法直接判斷裂縫開始成長的方向。
This dissertation studies the fracture behavior of two bonded functionally graded piezoelectric strips with internal cracks. The structure is subjected to anti-plane mechanical and in-plane electric loads simultaneously. The poling type of the piezoelectric material has 6mm symmetry and the material gradient is assumed to be in an exponential form. By using the Fourier transform, the problem can be formulated to a system of singular integral equations and solved by applying the Gauss-Chebyshev integration formula. The effects of edge boundary conditions, crack lengths, and the material non-homogeneous parameters on the intensity factors and energy density factors are discussed. Several degenerated problems are also discussed.
The results show that stress and electric displacement intensity factors are uncoupled and depend on the applied mechanical and electric loads, crack lengths, and crack locations. If the applied mechanical and electric loads are the same function, the stress intensity factors are the same for electrically impermeable cracks and electrically permeable cracks. The greater normalized intensity factors occur at the crack tips with stiffer material properties. This result agrees with the existence literatures. The effects of boundary conditions and gradient variations of the adjacent bonded material on the intensity factors are also significant. When one of the material non-homogeneous parameters approaches positive or negative infinity, the corresponding results can be reduced to one non-homogeneous material with different boundary conditions. The results also show that normalized intensity factors decrease with increasing the center distance of two cracks. Therefore, the intensity factors are strongly affected by the crack distance and the edge boundaries of strips.
In this article, the energy density factors are used as the driving force of crack propagation. The results show that a greater normalized energy density factor occurs at a crack tip with softer material properties. However, because the material parameter Scr is unknown, it is unable to predict the direction of crack propagation.
References
[1] Nissley, D. M., 1997. Thermal barrier coating life modeling in aircraft gas turbine engines. Journal of Thermal Spray Technology 6, 91-98.
[2] Lee, W. Y., Stinton, D. P., Berndt, C. C., Erdogan, F., Lee, Y.-D., and Mutasim, Z., 1996. Concept of Functionally Graded Materials for advanced thermal barrier coating applications. Journal of the American Ceramic Society 79, 3003-3012.
[3] Suresh, S., Olsson, M., Giannakopoulos, A. E., Padture, N. P., and Jitcharoen, J., 1999. Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces. Acta Materialia 47, 3915-3926.
[4] Zhu, X., Wang, Q., and Meng, Z., 1995. A functionally gradient piezoelectric actuator prepared by powder metallurgical process in PNN-PZ-PT system. Journal of Materials Science Letters 14, 516-518.
[5] Zhu, X., Zhu, J., Zhou, S., Li, Q., and Liu, Z., 1999. Microstructures of the monomorph piezoelectric ceramic actuators with functional gradients. Sensors and Actuators, A: Physical 74, 198-202.
[6] Bever, M. B., and Duwez, P. E., 1972. Gradients in composite materials. Materials Science and Engineering 10, 1-8.
[7] Kassir, M. K., 1972. A note on the twisting deformation of a non-homogeneous shaft containing a circular crack. International Journal of Fracture Mechanics 8, 325-334.
[8] Niino, M., Kumakawa, A., Watanabe, R., and Doi, Y., 1984. Fabrication of a high pressure thrust chamber by the CIP forming method. AIAA Paper, 84-1227.
[9] Wang, B. L., Han, J. C., and Zhang, X. H., 2003. 非均匀材料力学Science Press, Beijing, In Chinese.
[10] Erdogan, F., 1985. The crack problem for bonded nonhomogeneous materials under antiplane shear loading. Journal of Applied Mechanics, Transactions ASME 52, 823-828.
[11] Erdogan, F., Kaya, A. C., and Joseph, P. F., 1991. The Mode III crack problem in bonded materials with a nonhomogeneous interfacial zone. Journal of Applied Mechanics, Transactions ASME 58, 419-427.
[12] Delale, F., and Erdogan, F., 1983. The crack problem for a nonhomogeneous plane. Journal of Applied Mechanics, Transactions ASME 50, 609-614.
[13] Erdogan, F., Kaya, A. C., and Joseph, P. F., 1991. The crack problem in bonded nonhomogeneous materials. Journal of Applied Mechanics, Transactions ASME 58, 410-418.
[14] Delale, F., and Erdogan, F., 1988. Interface crack in a nonhomogeneous elastic medium. International Journal of Engineering Science 26, 559-568.
[15] Delale, F., and Erdogan, F., 1988. On the mechanical modeling of the interfacial region in bonded half-planes. Journal of Applied Mechanics, Transactions ASME 55, 317-324.
[16] Konda, N., and Erdogan, F., 1994. Mixed mode crack problem in a nonhomogeneous elastic medium. Engineering Fracture Mechanics 47, 533-545.
[17] Chen, Y. F., and Erdogan, F., 1996. Interface crack problem for a nonhomogeneous coating bonded to a homogeneous substrate. Journal of the Mechanics and Physics of Solids 44, 771-787.
[18] Choi, H. J., 1996. Bonded dissimilar strips with a crack perpendicular to the functionally graded interface. International Journal of Solids and Structures 33, 4101-4117.
[19] Erdogan, F., and Wu, B. H., 1997. The surface crack problem for a plate with functionally graded properties. Journal of Applied Mechanics, Transactions ASME 64, 449-456.
[20] Noda, N., and Jin, Z. H., 1993. Thermal stress intensity factors for a crack in a strip of a functionally gradient material. International Journal of Solids and Structures 30, 1039-1056.
[21] Fotuhi, A. R., and Fariborz, S. J., 2006. Anti-plane analysis of a functionally graded strip with multiple cracks. International Journal of Solids and Structures 43, 1239-1252
[22] Wang, B. L., Mai, Y. W., and Sun, Y. G., 2003. Anti-plane fracture of a functionally graded material strip. European Journal of Mechanics A/Solids 22, 357-368.
[23] Ueda, S., and Mukai, T., 2002. The surface crack problem for a layered elastic medium with a functionally graded nonhomogeneous interface. JSME International Journal, Series A 45, 371-378.
[24] Gao, L. C., Wu, L. Z., and Ma, T. Z., 2004. Mode I crack for a functionally graded orthotropic strip. European Journal of Mechanics, 23, 219-234.
[25] Long, X., and Delale, F., 2004. The general problem for an arbitrarily orient crack in a FGM layer. International Journal of fracture, 129, 221-238
[26] Kokini, K., DeJonge, J., Rangaraj, S., and Beardsley, B., 2002. Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surface and Coatings Technology 154, 223-231.
[27] Muller, E., Drasar, C., Schilz, J., and Kaysser, W. A., 2003. Functionally graded materials for sensor and energy applications. Materials Science and Engineering A 362, 17-39.
[28] Suresh, S., and Mortensen, A., 1998. Fundamentals of functionally graded materials: processing and thermomechanical behaviour of graded metals and metal-ceramic composites. IOM Communications Ltd, London.
[29] Williamson, R. L., Rabin, B. H., and Drake, J. T., 1993. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part I. Model description and geometrical effects. Journal of Applied Physics 74, 1310-1320.
[30] Drake, J. T., Williamson, R. L., and Rabin, B. H., 1993. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part II. Interface optimization for residual stress reduction. Journal of Applied Physics 74, 1321-1326.
[31] James, K. W., 2004. Handbook of Advanced Materials. John Wiley & Sons. Inc, New York.
[32] Li, C., Weng, G. J., Duan, Z., and Zou, Z., 2001. Dynamic stress intensity factor of a functionally graded material under antiplane shear loading. Acta Mechanica 149, 1-10.
[33] Kassir, M. K., 1972. Boussinesq problems for nonhomogeneous solid. Journal of the Engineering Mechanics Division, ASCE 98, 457-470.
[34] Popov, G. Y., 1973. Axisymmetric contact problem for elastic inhomogeneous half-space at coupling. Prikladnaya Matematika I Mekhanika 37, 1109-1116.
[35] Schovanec, L., 1989. Antiplane shear crack in a nonhomogeneous elastic material. Engineering Fracture Mechanics 32, 21-28.
[36] Li, C., Weng, G. J., and Duan, Z., 2001. Dynamic behavior of a cylindrical crack in a functionally graded interlayer under torsional loading. International Journal of Solids and Structures 38, 7473-7485.
[37] Ozturk, M. and Erdogan, F., 1993. Antiplane shear crack problem in bonded materials with a graded interfacial zone. International Journal of Engineering Science 31, 1641-1657
[38] Kassir, M. K. and Chuaprasert, M. F., 1974. A rigid punch in contact with a nonhomogeneous elastic solid. Transactions of the ASME, Journal of Applied Mechanics 42, 1019-1024.
[39] Gerasoulis, A. and Srivastav, R. P. 1980. A Griffth crack problem for a nonhomogeneous medium. International Journal of Engineering Science 18, 239- 247.
[40] Jin, Z. H. and Batra, R. C., 1996. Some basic fracture mechanics concepts in functionally graded materials. Journal of the Mechanics and Physics of Solids 44, 1221-1235.
[41] Jeon, S. P. and Tanigawa, Y., 1998. Axisymmetrical elastic behavior and stress intensity for a nonhomogeneous medium with a penny-shaped crack. JSME International Journal, Series A 41, 457-464.
[42] Li, C., 1998. Local stress field for torsion of a penny-shaped crack in a functionally graded material. International Journal of Fracture 91, L17-L22.
[43] Li, C. and Zou, Z., 1999. Torsional impact response of a functionally graded material with a penny-shaped crack. Transactions of the ASME, Journal of Applied Mechanics 66, 566-567.
[44] Parameswaran, V. and Shukla, A., 1999. Crack-tip stress fields for dynamic fracture in functionally gradient materials. Mechanics of Materials 31, 579-596.
[45] Li. H., Lambros, J., Cheeseman, B. A. and Santare, M. H., 2000. Experimental investigation of the quasi-static fracture of functionally graded materials. International Journal of Solids and Structures 37, 3715-3732.
[46] Dhaliwal, R. S. and Singh, B. M. 1978. On the theory of elasticity of a nonhomogeneous medium. Journal of Elasticity 8, 211-219.
[47] Lekhnitskii, S. G., 1979. On the bending of a plane inhomogeneous curved beam. PMM 43, 182-183.
[48] Eischen, J. W., 1987. Fracture of nonhomogeneous materials. International Journal of Fracture 34, 3-22.
[49] Schovanec, L. and Walton, J .R., 1988. On the stress singularity for an antiplane shear crack at the interface of two bonded inhomogeneous elastic materials. ASME Journal of the Applied Mechanics 55, 234-236.
[50] Jin, Z. H. and Noda, N., 1994. Crack-tip singular fields in nonhomogeneous materials. Transaction of the ASME, Journal of Applied Mechanics 61, 738-740.
[51] Noda, N. and Jin, Z. H., 1995. Crack-tip singularity fields in nonhomogeneous body under thermal stress fields. JSME International Journal, Series A 38, 364-369.
[52] Wang, B. L., and Zhang, X. H., 2004. A mode III crack in a functionally graded piezoelectric material strip. Journal of Applied Mechanics, Transactions ASME 71, 327-333.
[53] Wang, B. L., Han, J. C. and Du, S. Y., 1999. Multiple crack problem in nonhomogeneous composite materials subjected to dynamic anti-plane shearing. International Journal of Fracture 100, 343-353.
[54] Wang, B. L., Han, J. C. and Du, S. Y., 2000. Fracture mechanics for multilayers with penny-shaped cracks subjected to dynamic torsional loading. International Journal of Engineering Science 38, 893-901.
[55] Wang, B. L., Han, J. C. and Du, S. Y., 2000. Cracks problem for non-homogeneous composite material subjected to dynamic loading. International Journal of Solids and Structures 37, 1251-1274.
[56] Wang, B. L., Han, J. C. and Du, S. Y., 2000. Crack problems for functionally graded materials under transient thermal loading. Journal of Thermal Stresses 23, 143-168.
[57] Jin, Z. H. and Paulino, G. H., 2001. Transient thermal stress analysis of an edge crack in a functionally graded material. International Journal of Fracture 107, 73-98.
[58] Noda, N. and Wang, B. L., 2002. Transient thermoelastic responses of functionally graded materials containing collinear cracks. Engineering Fracture Mechanics 69, 1791-1809.
[59] Wang, B. L., Mai, Y. W. and Noda, N., 2002. Fracture mechanics analysis model for functionally graded materials with arbitrarily distributed properties. International Journal of Fracture 116, 161-177.
[60] Ikeda, T., 1990. Fundamentals of piezoelectricity. Oxford University Press, Oxford.
[61] Sashida, T., and Kenjo., T., 1993. The piezoelectric element and vibrator, An introduction to ultrasonic motors. Clarendon Press, Oxford.
[62] Parton, V. Z., 1976. Fracture mechanics of piezoelectric materials. Acta Astronautica 3, 671-683.
[63] Zhang, T. Y., and Hack, J. E., 1992. Mode-III cracks in piezoelectric materials. Journal of Applied Physics 71, 5865-5870.
[64] Meguid, S. A., and Wang, X. D., 1998. Dynamic antiplane behaviour of interacting cracks in a piezoelectric medium. International Journal of Fracture 91, 391-403.
[65] Wang, X. D., 2001. On the dynamic behaviour of interacting interfacial cracks in piezoelectric media. International Journal of Solids and Structures 38, 815-831.
[66] Shindo, Y., Murakami, H., Horiguchi, K., and Narita, F., 2002. Evaluation of electric fracture properties of piezoelectric ceramics using the finite element and single-edge precracked-beam methods. Journal of the American Ceramic Society 85, 1243-1248.
[67] Beom, H. G., 2003. Permeable cracks between two dissimilar piezoelectric materials. International Journal of Solids and Structures 40, 6669-6679.
[68] Zhang, T. Y., and Gao, C. F., 2004. Fracture behaviors of piezoelectric materials. Theoretical and Applied Fracture Mechanics 41, 339-379.
[69] Jiang, L., 2005. The nonlinear fracture behaviour of piezoelectric materials, University of Alberta, Edmonton, Alberta.
[70] Deeg, W. E. F., 1980. The analysis of dislocation, crack, and inclusion problem in piezoelectric solids, Stanford University.
[71] Pak, Y. E., 1990. Crack extension force in a piezoelectric material. Journal of Applied Mechanics, Transactions ASME 57, 647-653.
[72] Sosa, H., 1992. On the fracture mechanics of piezoelectric solids. International Journal of Solids and Structures 29, 2613-2622.
[73] Park, S. B., and Sun, C. T., 1995. Effect of electric field on fracture of piezoelectric ceramics. International Journal of Fracture 70, 203-216.
[74] Sih, G. C., and Zuo, J. Z., 2000. Multiscale behavior of crack initiation and growth in piezoelectric ceramics. Theoretical and Applied Fracture Mechanics 34, 123-141.
[75] Wang, X. D., and Meguid, S. A., 2000. Effect of electromechanical coupling on the dynamic interaction of cracks in piezoelectric materials. Acta Mechanica 143, 1-15.
[76] Zuo, J. Z., and Sih, G. C., 2000. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theoretical and Applied Fracture Mechanics 34, 17-33.
[77] Sih, G. C., 2002. A field model interpretation of crack initiation and growth behavior in ferroelectric ceramics: Change of poling direction and boundary condition. Theoretical and Applied Fracture Mechanics 38, 1-14.
[78] Wang, B. L., and Mai, Y. W., 2004. Impermeable crack and permeable crack assumptions, which one is more realistic? Journal of Applied Mechanics, Transactions ASME 71, 575-578.
[79] Parton, V. Z., and Kudryavtsev, B. A., 1988. Electromagnetoelasticity: piezoelectrics and electrically conductive solids. Gordon and Breach Science Publishers, New York.
[80] Hao, T. H., and Shen, Z. Y., 1994. New electric boundary condition of electric fracture mechanics and its applications. Engineering Fracture Mechanics 47, 793-802.
[81] Ou, Z. C., and Chen, Y. H., 2003. Discussion of the crack face electric boundary condition in piezoelectric fracture mechanics. International Journal of Fracture 123, L151-L155.
[82] Wu, C.C.M., Kahn, M. and Moy, W., 1996. Piezoelectric ceramics with functional gradients: A new application in material design. Journal of American Ceramics Society 79, 809-812.
[83] Li, C., and Weng, G. J., 2002. Antiplane crack problem in functionally graded piezoelectric materials. Journal of Applied Mechanics, Transactions ASME 69, 481-488.
[84] Wang, B. L., and Noda, N., 2003. Thermally loaded functionally graded materials with embedded defects. Journal of Thermal Stresses 26, 25-39.
[85] Ueda, S., 2003. Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theoretical and Applied Fracture Mechanics 40, 225-236.
[86] Chue, C. H., and Ou, Y. L., 2005. Mode III crack problems for two bonded functionally graded piezoelectric materials. International Journal of Solids and Structures 42, 3321-3337.
[87] Ou, Y. L., and Chue, C. H., 2006. Two mode III internal cracks located within two bonded functionally graded piezoelectric half planes respectively. Archive of Applied Mechanics 75, 364-378.
[88] Yong, H. D., and Zhou, Y. H., 2007. A mode III crack in a functionally graded piezoelectric strip bonded to two dissimilar piezoelectric half-planes. Composite Structures 79, 404-410.
[89] Yamazaki, D., Yamada, K., and Nakamura, K., 2001. Functionally graded broadband ultrasound transducer created by forming an internal temperature gradient. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 40, 7166-7167.
[90] Samadhiya, R., and Mukherjee, A., 2006. Functionally graded piezoceramic ultrasonic transducers. Smart Materials and Structures 15, 1627-1631.
[91] Sato, S., Nose, T., Masuda, S., and Yanase, S., 1999. Functionally graded optical polymer materials prepared using UV-curable liquid-crystals with an electric field. Materials Science Forum 308-311, 567-572.
[92] Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D., and Schulte, K., 2003. Functionally graded materials for biomedical applications. Materials Science and Engineering A 362, 40-60.
[93] Paszkiewicz, B., Paszkiewicz, R., Wosko, M., Radziewicz, D., Sciana, B., Szyszka, A., Macherzynski, W., and Tlaczala, M., 2007. Functionally graded semiconductor layers for devices application. Vacuum 82, 389-394.
[94] Tuma, J. J., 1979. Engineering Mathematics Handbook. Definitions, theorems, formulas, tables. Second Edition, McGraw-Hill International, America.
[95] Erdogan, F., Gupta, G. D., and Cook, T. S., 1973. Numerical solution of singular integral equations. In: Sih, G. C. (ed.), Mechanics of Fracture 1: Method of analysis and solution of crack problem, chap 7. Noordhoff International Publishing, Leyden, The Netherlands, 368-425.
[96] Rivlin, T. J., 1974. The Chebyshev polynomials. Wiley, New York.
[97] Erdogan, F., and Gupta, G. D., 1972. On the numerical solution of singular integral equations. Quarterly of Applied Mathematics 29, 525-534.
[98] Muskhelishvili, N. I., 1953. Singular integral equations. Noordhoff, Groningen, The Netherlands.
[99] Erdogan, F., Gupta, G. D., and Cook, T. S., 1973. Numerical solution of singular integral equations. In: Sih, G. C. (ed.), Mechanics of Fracture 1: Method of analysis and solution of crack problem. Noordhoff International Publishing, Leyden, The Netherlands, 368-425.
[100] Chen, Z. T. and Yu, S. W., 1997. Antiplane shear problem for a crack between two dissimilar piezoelectric materials. International Journal of Fracture. 86 L9-L12
[101] Li, X. F., and Duan, X. Y., 2001. Closed-form solution for a mode-III crack at the mid-plane of a piezoelectric layer. Mechanics Research Communications 28, 703-710.
[102] Li, X. F. and Tang, G. J., 2002. Antiplane permeable edge cracks in a piezoelectric strip of finite width. International Journal of Fracture 118, L45-L50.
[103] Sih, G. C., 1973. Some basic problems in fracture mechanics and new concepts. Engineering Fracture Mechanics 5, 365-377.
[104] Sih, G. C., 1974. Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture 10, 305-321.
[105] Shen, S., and Nishioka, T., 2000. Fracture of piezoelectric materials: Energy density criterion. Theoretical and Applied Fracture Mechanics 33, 57-65.
[106] Sih, G. C., 1991. Mechanics of Fracture Initiation and Propagation. Kluwer Academic, Dordrecht, Boston.
[107] Hu, K., and Zhong, Z., 2005. A moving mode-III crack in a functionally graded piezoelectric strip. International Journal of Mechanics and Materials in Design 2, 61-79.
[108] Chen, Z. T., and Worswick, M. J., 2000. Antiplane mechanical and inplane electric time-dependent load applied to two coplanar cracks in piezoelectric ceramic material. Theoretical and Applied Fracture Mechanics 33, 173-184.