簡易檢索 / 詳目顯示

研究生: 賴林慈
Lai, Lin-Tzu
論文名稱: 氧化鋅奈米結構系列之場發射元件、光感測器及濕度感測器之研製
Investigation of modified ZnO nanostructures based on Photodetector, Field emission and Humidity sensor
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 楊勝州
Young, Sheng-Joue
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 119
中文關鍵詞: 鉑奈米粒子修飾氧化鋅奈米片場發射柔性鎵摻雜氧化鋅奈米柱紫外光電感測器金奈米粒子修飾氧化鋅奈米柱濕度感測器
外文關鍵詞: Pt nanoparticles-decorated ZnO nanosheets field emission, flexible Ga-doped ZnO nanorods UV photodetector, Au nanoparticles-decorated ZnO nanorods humidity sensor
相關次數: 點閱:205下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的幾年中,金屬氧化物半導體以其卓越的性能(如高表面積,電子遷移率,熱穩定性和化學穩定性)而主導了商用傳感器。此外人們的注意力已經集中在新型奈米結構的獨特的性質上。這些獨特的性能對那些不斷追求提高光電元件性能的人們特別有吸引力。其中氧化鋅作為一種有前途的奈米材料,在其他奈米材料中脫穎而出,它具有各種優越的性能,並且在化學、氣體和生物分子的檢測方面具有出色的性能。本篇論文主要分為三部分,第一部分是“鉑奈米顆粒修飾氧化鋅奈米片之紫外光增強場發射特性”、第二部分是“鎵摻雜氧化鋅奈米柱之柔性金屬-半導體-金屬紫外線光感測器”、第三部分是“ 金奈米粒子修飾氧化鋅奈米柱之濕度感測器”。
    研究的第一部分是通過水溶液法在室溫下1小時並於玻璃基板上成功的合成氧化鋅奈米片,並通過直流磁控濺射系統製備了一組樣品,分別為0和30秒沉積鉑奈米顆粒。純氧化鋅奈米片與鉑奈米顆粒修飾的氧化鋅奈米片其平均長度分別為1.08和1.25μm。純的與鉑奈米顆粒修飾的氧化鋅奈米片其平均直徑約為30 nm。掃描式電子顯微鏡圖像觀察到鉑奈米顆粒修飾的氧化鋅奈米片的結構表面邊緣光滑並且鋒利。氧化鋅奈米片的表面有效的吸附鉑奈米顆粒。眾所皆知,其尖銳形態的奈米結構是優異的場發射性能條件之一。能量色散X-ray光譜分析確定了鉑奈米顆粒修飾的氧化鋅奈米片其原子濃度分別為51.23、48.22和0.55 %的鋅、氧和鉑。根據J-E曲線,純的與鉑奈米顆粒修飾的氧化鋅奈米片的起始電場在黑暗中分別為5.8 V /μm和3.8 V /μm,在紫外線照射下分別為3.9 V /μm和2.9 V /μm。經過計算,在紫外線照射下增強因子分別約為543和4651,在黑暗中則分別為4344和6341。結果表明鉑奈米顆粒修飾的氧化鋅奈米片是優良場發射器件的希望候補。
    研究的第二部分是通過在80 °C下3小時通過化學浴沉積法在聚奈二甲酸二乙酯塑膠(PEN)柔性基板上合成鎵摻雜氧化鋅奈米柱,並將其用作為柔性紫外線感測器。 掃描式電子顯微鏡圖像顯示氧化鋅與鎵摻雜氧化鋅奈米柱表面形貌看起來幾乎相同,除了鎵摻雜氧化鋅奈米柱略有增厚(從50 nm到55 nm)和伸長(600 nm到670 nm)。能量色散X-ray光譜分析證實鎵摻雜氧化鋅奈米柱鋅、氧和鎵的原子含量分別為56.86、41.94和1.20 %。氧化鋅與鎵摻雜氧化鋅奈米柱在1 V偏壓時的暗電流為1.07×10-9和8.60×10-9 A,光電流為8.30×10-8和3.92×10-6 A。氧化鋅與鎵摻雜氧化鋅奈米柱的光暗電流比為77.73和456.16。此外還測量了柔性鎵摻雜氧化鋅奈米柱紫外光感測器在彎曲和平坦狀態下的瞬態響應。施加彎曲變形後,與未彎曲相比,彎曲響應值的偏差較小。元件的瞬態響應一致且可重複。結果表明彎曲性能保持穩定,證明該元件具有優異的特性。
    研究的第三部分,通過水熱法在玻璃基板上以90 °C成長6個小時,成功的合成氧化鋅米柱,並通過直流磁控濺射系統製備一組樣品,分別沉積於樣品上0和30 秒金奈米粒子。純的和金修飾氧化鋅奈米柱的平均長度分別為2.3 μm和100 nm。純的和金修飾氧化鋅奈米柱的表面形態幾乎相同。金奈米顆粒的平均直徑為6-8 nm。由於金奈米粒子的表面修飾,金修飾氧化鋅奈米柱具有較高的表面粗糙度。能量色散X-ray光譜分析表明金修飾氧化鋅奈米柱其原子濃度分別由52.55,43.29和4.16 %的鋅、氧和金組成。與純氧化鋅奈米柱濕度感測器相比,金修飾氧化鋅奈米柱 濕度感測器具有更好的感測性能。在80 %濕度下,光暗電流對比度增加9.82,響應時間和恢復時間降低192.44和122.42秒。結果表明,通過金奈米顆粒的吸附可以有效地提高濕度感測器的感測特性。

    For the past few years, metal oxide semiconductors have dominated commercial sensors because of their superior performance, such as high surface area, high electron mobility, high thermal stability and high chemical stability. In addition, attention has paid to unique properties of novel nanostructures. Among these unique properties has particularly attractive to those who are ongoing for improved performance in optoelectronic elements. Among, ZnO as a promising nanomaterial for elements application to stands out from other nanomaterials, it has various superior performance and excellent sensing properties include the detection of chemicals, gas and biomolecules. The dissertation into three parts, the first part is "UV enhanced field emission properties based on ZnO nanosheets decorated with Pt nanoparticles", the second part is "flexible Metal-Semiconductor-Metal UV photodetectors based on Ga-doped ZnO nanorods", the third part is is "humidity sensor based on ZnO nanorods decorated with Au nanoparticles".
    The first part of the study, ZnO nanosheets (NSs) were synthesized successfully on a glass substrate at room temperature for 1 hour by aqueous solution method, a set of samples has been prepared via DC magnetron sputtering for different prerequisite with 0 and 30 sec Pt nanoparticles (NPs) deposition time. The average length of pure and Pt-decorated ZnO NSs was ~1.08 and ~1.25 μm, respectively. The average diameter of the pure and Pt-decorated ZnO NSs was ~30 and ~30 nm, respectively. The structure edge surface of pure and Pt-decorated ZnO NSs are smooth and sharp, respectively. The surface of ZnO NSs observed from the FESEM image was effectively decorated with Pt nanoparticles. Excellent field emission properties were shown for the sharp-tip morphology nanostructures. The SEM–EDX analysis confirm Pt-adsorbed ZnO NSs, which atomic consist of 51.23%, 48.22%, and 0.55% Zn, O, and Pt, respectively. From the J-E curves, the turn-on field was 5.8 V/μm and 3.8 V/μm in the dark and 3.9 V/μm and 2.9 V/μm under UV irradiation, respectively, for the pure and Pt-adsorbed ZnO samples. From the F-N plot of ZnO and the Pt-adsorbed ZnO samples, the field enhancement factors were estimated to be approximately 543 and 4651 under UV irradiation and 4344 and 6341 in the dark, respectively. The results indicate that the Pt-decorated ZnO NSs are a hopeful candidate for excellent field emission devices.
    The second part of the study, the synthesis of Ga-doped ZnO (GZO) nanorods (NRs) on naphthalate (PEN) flexible substrate via chemical bath deposition method at 80°C for 3 h and its use as flexible UV PDs. The SEM shows ZnO and GZO NRs look almost identical, except GZO NRs for the slight thickening (from 50 nm to 55 nm) and elongation (600 nm to 670 nm). The SEM–EDX analysis confirm GZO NRs, which atomic contents of Zn, O and Ga were determined as 56.86, 41.94 and 1.20 %, respectively. The dark current was approximately 1.07 × 10-9 and 8.60 × 10-9 A of ZnO and GZO nanorod, and the photocurrent was approximately 8.30 × 10-8 and 3.92 × 10-6 A with a 1 V bias, respectively. The photo-current to dark current contrast ratios of ZnO and GZO nanorod-based PDs were approximately 77.73 and 456.16 with 1 V bias, respectively. Further, I–V curves and transient response of flexible GZO NR PDs in bending (bending up and down) and flat conditions were measured. After imposing bending deformation, the deviation in the response value was less significant for bending (bending up and down) compared with that for unbending. The peak photocurrent values for the devices were consistent and repeatable. The results showed that the bending properties remained stable, proving that the manufactured device has excellent characteristics.
    The third part of the study, ZnO NRs were synthesized successfully on a glass substrate at 90 °C for 6 hours by hydrothermal method, a set of samples has been prepared via DC magnetron sputtering for different prerequisite with 0 and 30 sec Au NPs deposition time. The average length of pure and Au-decorated ZnO NRs was ~2.3 μm and ~100 nm, respectively. The morphologies of ZnO and Au-decorated ZnO NRs were almost identical. The average diameter of the Au NPs was 6–8 nm. The Au-decorated ZnO NRs exhibited high surface roughness because of the surface modification of the Au NPs. The SEM–EDX analysis confirm Au-adsorbed ZnO NRs, which atomic consist of 52.55, 43.29 and 4.16 % Zn, O, and Au, respectively. Compared to the pure ZnO NRs RH sensor, the Au-modified ZnO NRs RH sensor showed better humidity sensing performance. the photo-to-dark current contrast ratios addition 9.82, response time and recovery time lower 192.44 and 122.42 sec under 80 % RH. Results indicated that the RH sensing property can effectively improve by Au nanoparticle adsorption.

    Contents Abstract (in Chinese) I Abstract (in English) IV Acknowledgement VIII Contents IX Table Captions XIII Figure Captions XIV Chapter 1 Introduction 1-1 Background of ZnO Material and Related Applications 1 1-2 Organization of this dissertation 3 Chapter 2 Basic Theory and Experimental Section 2-1 Theory of Field Emission Device 10 2-2 Theory of Photodetector 11 2-2-1 Metal-Semiconductor-Metal of Photodetector 11 2-3 Theory of ZnO NRs-based Humidity Sensor 14 2-4 Analysis Instruments 15 2-4-1 Field Emission Scanning Electron Microscope (FE-SEM) 15 2-4-2 Transmission Electron Microscopy (TEM) 16 2-4-3 X-ray Diffraction (XRD) 16 2-4-4 Photoluminescence (PL) Spectrum System 17 2-4-5 Field Emission Devices Measurement System 17 2-4-6 UV Photodetectors Measurement System 18 2-4-7 Humidity Sensor Measurement System 18 Chapter 3 UV enhanced field emission properties based on ZnO nanosheets decorated with Pt nanoparticles 3-1 UV enhanced field emission properties of ZnO nanosheets with different NaOH concentration 31 3-1-1 Introduction 31 3-1-2 Device Structure and Fabrication 32 3-1-2-1 Growth of ZnO nanosheets field emission devices 32 3-1-2-2 Material Analysis and Property Analysis 33 3-1-3 Results and Discussion 33 3-1-3-1 Material and Structure Analysis 33 3-1-3-2 Field emission Property Analysis 36 3-1-4 Summary 38 3-2 UV-Enhanced 2-D nanostructured ZnO field emitter with adsorbed Pt nanoparticles 48 3-2-1 Introduction 48 3-2-2 Device Structure and Fabrication 49 3-2-2-1 Growth of Pt-ZnO nanosheets field emission devices 49 3-2-2-2 Material Analysis and Property Analysis 50 3-2-3 Results and Discussion 50 3-2-3-1 Material and Structure Analysis 50 3-2-3-2 Field emission Property Analysis 52 3-2-4 Summary 54 Chapter 4 Flexible Metal-Semiconductor-Metal UV Photodetectors based on Ga-doped ZnO nanorods 4-1 Introduction 62 4-2 Device Structure and Fabrication 63 4-2-1 Growth of Ga doped ZnO nanorods photodetectors 63 4-2-2 Material Analysis and Property Analysis 65 4-3 Results and discussion 65 4-3-1 Material and Structure Analysis 65 4-3-2 Photo-Electric Property Analysis of Photodetector 67 4-4 Summary 68 Chapter 5 Humidity Sensor based on ZnO nanorods Decorated with Au nanoparticles 5-1 Introduction 76 5-2 Device Structure and Fabrication 78 5-2-1 Growth of Au-ZnO nanorods humidity sensors 78 5-2-2 Material Analysis and Property Analysis 78 5-3 Results and discussion 79 5-3-1 Material and Structure Analysis 79 5-3-2 Photo-Electric Property Analysis of humidity sensor 80 5-4 Summary 82 Chapter 6 Conclusion and Future Work 6-1 Conclusion 90 6-2 Future work 92 Reference 94 Publication List of Lin-Tzu Lai

    [1] C. Klingshirn, “The Luminescence of ZnO under High One- and Two-Quantum Excitation,” Physics Status Solidi B, vol. 71, pp. 547-556, (1975).
    [2] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization,” J. Appl. Phys., vol. 84, pp. 3912-3918, (1998).
    [3] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B, vol. 23, pp. 932-948, (2004).
    [4] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, pp. 041301(104), (2005).
    [5] L. Wei, X. Zhang, and Z. Zuoya, “Application of ZnO nanopins as field emitters in a field-emission-display device” J. Vac. Sci. Technol. B., vol. 25, pp. 608-610, (2007).
    [6] Y. Y. Bu, and Z. Y. Chen, “Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array,” J. Power. Sources., vol. 272, pp. 647-653, (2014).
    [7] J. H. Han, Z. F. Liu, K. Y. Guo, B. Wang, X. Q. Zhang, and T. T. Hong, “High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays” Appl. Catal. B-Environ., vol.163, pp. 179-188, (2015).
    [8] X. Ge, K. Q. Hong, J. Zhang, L. Q. Liu, and M. X. Xu, “A controllable microwave-assisted hydrothermal method to synthesize ZnO nanowire arrays as recyclable photocatalyst,” Mater. Lett., vol. 139, pp. 119-121, (2015).
    [9] K. K. Naik, R. Khare, D. Chakravarty, M. A. More, R. Thapa, D. J. Late, and C. S. Rout, “Field emission properties of ZnO nanosheet arrays,” Appl. Phys. Lett. vol. 105, pp. 233101(6), (2014).
    [10] V. Suresh, M. S. Huang, M. P. Srinivasan, and S. Krishnamoorthy, “Macroscopic high density nanodisc arrays of zinc oxide fabricated by block copolymer self-assembly assisted nanoimprint lithography,” J. Mater. Chem., vol. 22, pp. 21871-21877, (2012).
    [11] R. Zamiri, A. Kaushal, A. Rebelo, and J. M. F. Ferreira, “Er doped ZnO nanoplates: Synthesis, optical and dielectric properties,” Ceram. Int., vol. 40, pp. 1635-1639, (2014).
    [12] X. H. Wang, L. Q. Huang, L. J. Niu, R. B. Li, D. H. Fan, F. B. Zhang, Z. W. Chan, X. Wang, and Q. X. Gue, “The impacts of growth temperature on morphologies, compositions and optical properties of Mg-doped ZnO nanomaterials by chemical vapor deposition,” J. Alloy. Compd., vol. 622, pp. 440-445, (2015).
    [13] Y. H. Liu, S. J. Chang, and S. J. Young, “Enhanced Field Emitter Base on Indium-Doped ZnO Nanostructures by Aqueous Solution,” ECS Journal of Solid State Science and Technology, vol. 5, pp. R203-R205, (2016).
    [14] C. He, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Synthesis of ZnO nanoparticles using nanosecond pulsed laser ablation in aqueous media and their self-assembly towards spindle-like ZnO aggregates,” Appl. Surf. Sci., vol. 7, pp. 2196-2202, (2008).
    [15] A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, Y. Bouachiba, A. Grid, and T. Kerdjac, “Properties of cobalt-doped zinc oxide thin films grown by pulsed laser deposition on glass substrates,” Mat. Sci. Semicon. Proc., vol. 28, pp. 54-58, (2014).
    [16] Y. M. Huang, Q. L. Ma, and B. G. Zhai, “Controlled morphology of ZnO nanostructures by adjusting the zinc foil heating temperature in an air-filled box furnace,” Mater. Chem. Phys., vol. 147, pp. 788-795, (2014).
    [17] N. A. Hambali, H. Yahaya, M. R. Mahmood, T. Terasako, and A. M. Hashim, “Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature,” Nanoscale. Res. Lett., vol. 9, pp. 609(7) (2014).
    [18] S. M. Nicaise, J. J. Cheng, A. Kiani, S. Gradecak, and K. K. Berggren, “Control of zinc oxide nanowire array properties with electron-beam lithography templating for photovoltaic applications,” Nanotechnology, vol. 7, pp. 075303(9), (2015).
    [19] D. I. Kim, Y. K. Hong, S. H. Lee, J. Kim, and J. Joo, Curr. “Fine luminescent patterning on ZnO nanowires and films using focused electron-beam irradiation,” Current. Appl. Phys., vol. 9, pp. 1228-1233, (2014).
    [20] R. Ahmad, N. Tripathy, M. Y. Khan, K. S. Bhat, M. S. Ahn, and Y. B. Hahn, “Ammonium ion detection in solution using vertically grown ZnO nanorod based field-effect transistor,” Rsc. Adv., vol. 60, pp. 54836-54840, (2016).
    [21] A. Kathalinagam, and H. S. Kim, “Coulomb blockade and plasmonic nanoantenna effect in back gated ZnO nanorod FET,” Optik., vol. 13, pp. 5226-5229, (2016).
    [22] S. J. Young, and Y. H. Liu, “Ultraviolet photodetectors with Ga-doped ZnO nanosheets structure,” Microelectron. Eng., vol. 148, pp. 14-16, (2015).
    [23] C.W. Liu, S. J. Chang, C. H. Hsiao, K. Y. Lo, T. H. Kao, B. C. Wang, S. J. Young, K. S. Tsai, and S. L. Wu, “Noise Properties of Low-Temperature-Grown Co-Doped ZnO Nanorods as Ultraviolet Photodetectors,” IEEE. J. Sel. Top. Quant., vol. 6, pp. 3800707(7), (2014).
    [24] Z. F. Shi, Y. T. Zhang, X. J. Cui, S. W. Zhang, B. Wu, J. Y. Chu, W. X. Dong, B. L. Zhang, and G. T. Du, “Epitaxial growth of vertically aligned ZnO nanowires for bidirectional direct-current driven light-emitting diodes applications,” Crystengcomm., vol. 17, pp. 40-49, (2015).
    [25] S. N. Sarangi, S. Nozaki, and S. N. Sahu, “ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor,” J. Biomed. Nanotechnol., vol. 6, pp. 988-996, (2015).
    [26] B. Fang, C. H. Zhang, G. F. Wang, M. F. Wang, and Y. L. Ji, “A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres,” Sensor. Actuat. B-Chem., vol. 1, pp. 304-310, (2011).
    [27] T. H. Jeoung, Y. S. Kim, Y. S. Nam, S. H. Lee, J. W. Kang, J. C. Kim, and S. G. Lee, “Development of Thermal Runaway Preventing ZnO Varistor for Surge Protective Device,” J. Nanosci. Nanotechno., vol. 14, pp. 8957-8960, (2014).
    [28] Z. S. Hosseini, A. I. Zad, and A. Mortezaali, “Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures,” Sensor. Actuator. B-Chem., vol. 207, pp. 865-871, (2015).
    [29] C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express., vol. 22, pp. 16731-16737, (2014).
    [30] W. B. Wang, H. Gu, X. L. He, W. P. Xuan, J. K. Chan, X. Z. Wang, and J. K. Luo, “Thermal annealing effect on ZnO surface acoustic wave-based ultraviolet light sensors on glass substrates,” Appl. Phys. Lett., vol. 104, pp. 212107(5), (2014).
    [31] M. H. Jung, H. G. Yun, S. Kim, and M. G. Kang, “ZnO nanosphere fabrication using the functionalized polystyrene nanoparticles for dye-sensitized solar cells,” Electrochim. Acta., vol. 22, pp. 6563-6569, (2010).
    [32] J. Yin, H. Zhu, Y. Wang, Z. Wang, J. Gao, Y. Mai, Y. Ma, M. Wan, and Y. Huang, “A study of ZnO:B films for thin film silicon solar cells,” Appl. Surf. Sci., vol. 259, pp. 758-763, (2012).
    [33] F. M. Simanjuntak, O. K. Prasad, D. Panda, C. A. Lin, T. L. Tsai, K. H. Wei, and T. Y. Tseng, “Impacts of Co doping on ZnO transparent switching memory device characteristics,” Appl. Phys. Lett., vol. 18, pp. 183506, (2016).
    [34] T. D. Dongale, K. V. Khot, S. S. Mali, P. S. Patil, P. K. Gaikwad, R. K. Kamat, and P. N. Bhosale, “Development of Ag/ZnO/FTO thin film memristor using aqueous chemical route,” Mat. Sci. Semicon. Proc., vol. 40, pp. 523-526, (2015).
    [35] S. S. Warule, N. S. Chandhari, R. T. Shisode, K. V. Desa, B. B. Kale, and M. A. More, “Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behavior,” Crystengcomm., vol. 17, pp. 140-148, (2015).
    [36] D. Y. Jiang, C. X. Shan, J. Y. Zhang, Y. M. Lu, B. Yao, D. X. Zhao, Z. Z. Zhang, X. W. Fan, and D. Z. Shen, “Schottky barrier photodetectors based on Mg0.40Zn0.60O thin films,” Cryst. Growth Des., vol. 9, pp. 454–456, (2009).
    [37] K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, and D. X. Zhao, “The growth of ZnMgO alloy films for deep ultraviolet detection,” J. Phys. D: Appl. Phys., vol. 41, pp. 125104(4), (2008).
    [38] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays,” Appl. Phys. Lett., vol. 83, pp. 144-146, (2003).
    [39] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, and T. Yao, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett., vol. 77, pp. 3761-3763, (2000).
    [40] M. A. Gabal, S. A. Al-Thabaiti, E. H. El-Mossalamy, and M. Mokhtar, “Structural, magnetic and electrical properties of Ga-substituted NiCuZn nanocrystalline ferrite,” Ceram. Int., vol. 36, pp. 1339-1346, (2010).
    [41] Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang, and S. T. Lee, “ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector,” Appl Phys Lett, vol. 96, pp. 053102(4), (2010).
    [42] F. Sun, C. X. Shan, S. P. Wang, B. H. Li, Z. Z. Zhang, C. L Yang, and D. Z. Shen, “Ultraviolet photodetectors fabricated from ZnO p-i-n homojunction structures,” Mater Chem Phys, vol. 129, pp. 27–29, (2011).
    [43] J. Kim, J. H. Yun, C. H. Kim, Y. C. Park, J. Y. Woo, J. Park, J. H. Lee, J. Yi, and C. S. Han, “ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect,” Nanotechnology, vol. 21, pp. 115205(6), (2010).
    [44] L. Qin, C. Shing, and S. Sawyer, “Metal-semiconductor-metal ultraviolet photodetectors based on zinc-oxide colloidal nanoparticles,” IEEE Electron Device Lett, vol. 32, pp. 51–53, (2011).
    [45] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” Journal of Applied Physics, vol. 79, pp. 7433-7473, (1996).
    [46] X. Fang, Y. Bando, U. K. Gautam, C. Ye, and D. Golberg, “Inorganic semiconductor nanostructures and their field-emission applications,” J. Mater. Chem., vol. 18, pp. 509–522, (2008).
    [47] N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors,” Catal. Surv. Asia, vol. 7, pp. 63-75, (2003).
    [48] E. Comini, “Metal oxide nano-crystals for gas sensing,” Anal. Chim. Acta, vol. 568, pp. 28-40, (2006).
    [49] F. L. Meng, N. N. Hou, Z. Jin, B. Sun, W. Q. Li, X. H. Xiao, C. Wang, M. Q. Li, and J. H. Liu, “Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures,” Sens. Actuat. B, vol. 219, pp. 209-217, (2015).
    [50] Y. F. Sun, X. J. Huang, F. L. Meng, and J. H. Liu, “Study of influencing factors of dynamic measurements based on SnO2 gas sensor,” Sensors, vol. 4, pp. 95-104, (2004).
    [51] H. Wu, C. Xu, J. Xu, L. F. Lu, Z. Y. Fan, X. Y. Chen, Y. Song, and D. D. Li, “Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment,” Nanotechnology, vol. 24, pp. 455401(8), (2013).
    [52] H. Wu, D. D. Li, X. F. Zhu, C. Y. Yang, D. F. Liu, X. Y. Chen, Y. Song, and L. F. Lu, “High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach,” Electrochim. Acta, vol. 116, pp.129-136, (2014).
    [53] C. M. Chang, M. H. Hon, and I. C. Leu, “Outstanding H2 sensing performance of Pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms,” ACS Appl. Mater. Interfaces, vol. 5, pp. 135-143, (2013).
    [54] J. Guo, J. Zhang, M. Zhu, D. X. Ju, H. Y. Xu, and B. Q. Cao, “High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles,” Sens. Actuators, B, vol. 199, pp. 339-345, (2014).
    [55] M. A. Lim, Y. W. Lee, H. S. Woo, and I. Park, “Novel fabrication method of diverse one-dimensional Pt/ZnO hybrid nanostructures and its sensor application,” Nanotechnology, vol. 22, pp. 035601(9), (2011).
    [56] P. Eunyu, K. O. Seok, P. S. Joo, L. J. Seo, Y. Sunah, and J. Jyongsik, “One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application,” J. Mater. Chem., vol. 22, pp. 1521-1526, (2012).
    [57] D. D. Frolov, Y. N. Kotovshchikov, I. V. Morozov, A. I. Boltalin, A. A. Fedorova, A. V. Marikutsa, M. N. Rumyantseva, A. M. Gaskov, E. M. Sadovskaya, and A. M. Abakumov, “Oxygen exchange on nanocrystalline tin dioxide modified by palladium,” J. Solid State Chem., vol. 186, pp. 1-8, (2012).
    [58] A. S. M. Iftekhar Uddin, D. T. Phan, and G. S. Chung, “Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid,” Sens. Actuators, B, vol. 207, pp. 362-369, (2015).
    [59] S. Nandan, G. R. Kumar, and L. P. See, “Gold-Nanoparticle-Functionalized In2O3 Nanowires as CO Gas Sensors with a Significant Enhancement in Response,” ACS Appl. Mater. Interfaces, vol. 3, pp. 2246-2252, (2011).
    [60] Y. Masayoshi, K. Tetsuya, and S. Kengo, “Preparation of a Stable Sol Suspension of Pd-Loaded SnO2 Nanocrystals by a Photochemical Deposition Method for Highly Sensitive Semiconductor Gas Sensors,” ACS Appl. Mater. Interfaces, vol. 4, pp. 4231-4236, (2012).
    [61] R. H. Fowler, and L. W. Nordheim, “Electron emission in intense electric fields”, Proc. Roy. Soc. (London), A, vol. 119, pp. 173-181, (1928).
    [62] E. L. Murphy, and R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region”, Phys. Rev., vol. 102, pp. 1464-1473, (1956).
    [63] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, “Field-Emitter Arrays Applied to Vacuum Fluorescent Display”, IEEE Trans. Electron Devices, vol. 36, pp. 225-228, (1989).
    [64] Y. Saito, and S. Uemura, “Field nanotubes and its application to electron sources,” Carbon, vol. 38, pp. 169-182, (2000).
    [65] D. K. Schroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons, Inc., (1998).
    [66] S. M. Sze, “Physics of Semiconductor Devices,” New York, John Wiley & Sons, (1981).
    [67] E. H. Phoderick, and R. H. Williams, “Metal-Semiconductor Contacts, 2nd ed,” New York, Oxford University press, (1988).
    [68] M. Marso, M. Horstmann, H. Hardtdegen, P. Kordos, and H. Luth, “Electrical behaviour of the InPInGaAs based MSM-2DEG diode,” Solid State Electron, vol. 41, pp. 25-31, (1997).
    [69] P. Mitra, A. P. Chatterjee, and H. S. Maiti, “ZnO thin film sensor”, Mater. Lett., vol. 35, pp. 33-38, (1998).
    [70] P. P. Sahay, “Zinc oxide thin film gas sensor for detection of acetone”, J. Mater. Sci., vol. 40, pp. 4383-4385, (2005).
    [71] P. Ruterana, M. Albrecht, and J. Neugebauer, “Nitride Semiconductors: handbook on materials and devices,” Wiley-VCH, (2003).
    [72] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, pp. 643-645, (1996).
    [73] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim, and A. Yoshikawa, “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers,” Appl. Phys. Lett., vol. 77, pp. 2557-2559, (2000).
    [74] Y Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou, and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 86, pp. 043108(4), (2005).
    [75] C. Klingshirn, “The luminescence of ZnO under high one- and twoquantum excitation,” Phys. Status Solidi B, vol. 71, pp. 547–556, (1975).
    [76] U. Ozgur, Y. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, pp. 041301, (2005).
    [77] Z. F. Shi,Y. T. Zhang, X. J. Cui, S.W. Zhang, B.Wu, J.Y.Chu,W. X. Dong, B. L. Zhang, and G. T. Du, “Epitaxial growth of vertically aligned ZnO nanowires for bidirectional direct-current driven light-emitting diodes applications,” Crystengcomm, vol. 17, pp. 40–49, (2015).
    [78] T. H. Jeoung, Y. S. Kim, Y. S. Nam, S. H. Lee, J. W. Kang, J. C. Kim, and S. G. Lee, “Development of thermal runaway preventing ZnO varistor for surge protective device,” J. Nanosci. Nanotechnol., vol. 14, pp. 8957–8960, (2014).
    [79] Z. S. Hosseini, A. I. Zad, and A. Mortezaali, “Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures,” Sens. Actuator B, Chem., vol. 207, pp. 865–871, (2015).
    [80] C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, “ZnO ultraviolet random laser diode on metal copper substrate,” Opt. Express., vol. 22, pp. 16731–16737, (2014).
    [81] W. B. Wang, H. Gu, X. L. He, W. P. Xuan, J. K. Chan, X. Z. Wang, and J. K. Luo, “Thermal annealing effect on ZnO surface acoustic wave-based ultraviolet light sensors on glass substrates,” Appl. Phys. Lett., vol. 104, pp. 212107, (2014).
    [82] S. S. Warule, N. S. Chandhari, R. T. Shisode, K. V. Desa, B. B. Kale, and M. A. More, “Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behaviour,” Crystengcomm, vol. 17, pp. 140–148, (2015).
    [83] X. H. Wang, L. Q. Huang, L. J. Niu, R. B. Li, D. H. Fan, F. B. Zhang, Z. W. Chan, X. Wang, and Q. X. Gue, “The impacts of growth temperature on morphologies, compositions and optical properties of Mg-doped ZnO nanomaterials by chemical vapor deposition,” J. Alloy Compounds, vol. 622, pp. 440–445, (2015).
    [84] X. Ge, K. Q. Hong, J. Zhang, L. Q. Liu, and M. X. Xu, “A controllable microwave-assisted hydrothermal method to synthesize ZnO nanowire arrays as recyclable photocatalyst,” Mater. Lett., vol. 139, pp. 119–121, (2015).
    [85] A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, Y. Bouachiba, A. Grid, and T. Kerdjac, “Properties of cobalt-doped zinc oxide thin films grown by pulsed laser deposition on glass substrates,” Mater. Sci. Semicond. Process., vol. 28, pp. 54–58, (2014).
    [86] Y. M. Huang, Q. L. Ma, and B. G. Zhai, “Controlled morphology of ZnO nanostructures by adjusting the zinc foil heating temperature in an airfilled box furnace,” Mater. Chem. Phys., vol. 147, pp. 788–795, (2014).
    [87] N. A. Hambali, H. Yahaya, M. R. Mahmood, T. Terasako, and A. M. Hashim, “Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: Effects of current density and temperature,” Nanoscale Res. Lett., vol. 9, pp. 609, (2014).
    [88] L. Wei, X. Zhang, and Z. Zuoya, “Application of ZnO nanopins as field emitters in a field-emission-display device,” J. Vac. Sci. Technol. B, vol. 25, pp. 608–610, (2007).
    [89] Y. Y. Bu and Z. Y. Chen, “Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array,” J. Power Sources, vol. 272, pp. 647–653, (2014).
    [90] J. H. Han, Z. F. Liu, K. Y. Guo, B. Wang, X. Q. Zhang, and T. T. Hong, “High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays,” Appl. Catalysis B, Environ., vol. 163, pp. 179–188, (2015).
    [91] X. Ge, K. Q. Hong, J. Zhang, L. Q. Liu, and M. X. Xu, “A controllable microwave-assisted hydrothermal method to synthesize ZnO nanowire arrays as recyclable photocatalyst,” Mater. Lett., vol. 139, pp. 119–121, (2015).
    [92] K. K. Naik, R. Khare, D. Chakravarty, M. A. More, R. Thapa, D. J. Late, and C. S. Rout, “Field emission properties of ZnO nanosheet arrays,” Appl. Phys. Lett., vol. 105, pp. 233101, (2014).
    [93] V. Suresh, M. S. Huang, M. P. Srinivasan, and S. Krishnamoorthy, “Macroscopic high density nanodisc arrays of zinc oxide fabricated by block copolymer self-assembly assisted nanoimprint lithography,” J. Mater. Chem., vol. 22, pp. 21871–21877, (2012).
    [94] R. Zamiri, A. Kaushal, A. Rebelo, and J. M. F. Ferreira, “Er doped ZnO nanoplates: Synthesis, optical and dielectric properties,” Ceramics Int., vol. 40, pp. 1635–1639, (2014).
    [95] B. Meyer and D. Marx, “Density-functional study of the structure and stability of ZnO surfaces,” Phys. Rev. B, vol. 67, pp. 035403, (2003).
    [96] J. R. Huang, Y. J. Wu, C. P. Gu, M. H. Zhai, L. Yu, M. Yang, and J. H. Liu, “Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property,” Sens. Actuators B, Chem., vol. 146, pp. 206–212, (2010).
    [97] H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” nanotechnology, vol. 19, pp. 125603, (2008).
    [98] W. C. Yen, H. Medina, C.W. Hsu, and Y. L. Chueh, “Conformal graphene coating on high-aspect ratio Si nanorod arrays by a vapor assisted method for field emitter,” RSC Adv., vol. 4, pp. 27106–27111, (2014).
    [99] X. T. Zhou, T. H. Lin, Y. H. Liu, C. X. Wu, X. Y. Zeng, D. Jiang, Y. A. Zhang, and T. L. Guo, “Structural, optical, and improved fieldemission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation,” ACS Appl. Mater. Interf., vol. 5, pp. 10067–10073, (2013).
    [100] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D.Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003–1009, (2007).
    [101] C. H. Chen, S. J. Chang, S. P. Chang,Y. C. Tsai, I. C. Chen, T. J.Hsueh, and C. L. Hsu, “Enhanced field emission of well-aligned ZnO nanowire arrays illuminated by UV,” Chem. Phys. Lett., vol. 490, pp. 176–179, (2010).
    [102] H. Y. Yang, S. P. Lau, S. F. Yu, L. Huang, M. Tanemura, J. Tanaka, T. Okita, and H. H. Hag, “Field emission from zinc oxide nanoneedles on plastic substrates,” Adv. Nanotechnol. Phys., vol. 16, pp. 1300–1303, (2005).
    [103] J. P. Cheng, R. Y. Guo, and Q. M. Wang, “Zinc oxide single-crystal microtubes,” Appl. Phys. Lett., vol. 85, pp. 5140–5142, (2004).
    [104] Z. Zulkifli, S. Munisamy, M. Z. M. Yusop, G. Kalita, and M. Tanemura, “Fabrication of nanostructured ZnO films for transparent field emission displays,” Jpn. Appl. Phys., vol. 52, pp. 11NJ07, (2013).
    [105] L. L. Wang, S. D. Gong, L. H. Wu, and X. J. Li, “Field emission from zinc oxide nanorod bundles grown on silicon nanoporous pillar array,” Appl. Surf. Sci., vol. 270, pp. 124–127, (2013).
    [106] S. J. Young and Y. H. Liu, “Enhanced field emission properties of twodimensional ZnO nanosheets under UV illumination,” IEEE J. Sel. Topics Quantum Electron., vol. 21, pp. 9100304–1–9100304-4, (2015).
    [107] Y. H. Liu, S. J. Young, L.W. Ji, and S. J. Chang, “Enhanced field emission properties of Ga-doped ZnO nanosheets by using an aqueous solution at room temperature,” IEEE Trans. Electron Devices, vol. 61, pp. 4192–4196, (2014).
    [108] S. J. Chang, B. G. Duan, C. H. Hsiao, C. W. Liu, and S. J. Young, “UV enhanced emission performance of lowtemperature grownGa-doped ZnO nanorods,” IEEE Photon. Technol. Lett., vol. 26, pp. 66–69, (2014).
    [109] Y. H. Liu, S. J. Young, L.W. Ji, T. H. Meen, C. H. Hsiao, C. S. Huang, and S. J. Chang, “UV enhanced field emission performance ofMg-doped ZnO nanorods,” IEEE Trans. Electron Devices, vol. 61, pp. 1541–1545, (2014).
    [110] Q. Feng, S. Y. Li, W. H. Ma, H. J. Fan, X. H. Wan, T. Lei, Z. J. Chen, J. Yang and B. Qin, “Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation,” Journal of Alloys and Compounds, vol. 737, pp. 197-206, (2018).
    [111] T. Qsaki, “Synthesis of Zn (x) Co3-x O-4 spinels at low temperature and atmospheric pressure,” Journal of Materials Science, vol. 53, no. 5, pp. 3250-3266, (2018).
    [112] Z. Y. Zhang, M. Z. Xu, L. Liu, X. F. Ruan, J. F. Yan, W. Zhao, J. N. Yun, Y. N. Wang, S. J. Qin and Y. Zhang, “Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing,” Sensors and Actuators B-Chemical, vol. 257, pp. 714-727, ( 2018).
    [113] R. Rahmanian, S. A. Mozaffari, H. S. Amoli and M. Abedi, “Development of sensitive impedimetric urea biosensor using DC sputtered Nano-ZnO on TiO2 thin film as a novel hierarchical nanostructure transducer,” Sensors and Actuators B-Chemical, vol. 256, pp. 760-774, (2018).
    [114] A. Goktas, “High-quality solution-based Co and Cu co-doped ZnO nanocrystalline thin films: Comparison of the effects of air and argon annealing environments,” Journal of Alloys and Compounds, vol. 735, (2018).
    [115] H. Souissi, S. Jabri, A. Souissi, A. Lusson, P. Galtier, A. Meftah, V. Sallet and M. Queslati, “Effect of in situ Al doping on structure and optical properties of ZnO nanowires grown by MOCVD,” Materials Research Express, vol. 5, pp. 015003, (2018).
    [116] R. Shabannia, “High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods,” Materials Letters, vol. 214, pp. 254-256, (2018).
    [117] J. L. He, X. L. Zheng, X. D. Hong, W. P. Wang, Y. Y. Cao, T. Chen, L. J. Kong, Y. P. Wu, Z. M. Wu and J. Y. Kang, “Enhanced field emission of ZnO nanowire arrays by the control of their structures,” Materials Letters, vol. 216, pp. 182-184, (2018).
    [118] Q. A. Drmosh, Z. H. Yamani, “Hydrogen sensing properties of sputtered ZnO films decorated with Pt nanoparticles,” Ceramics International, vol. 42, pp. 12378-12384, (2016).
    [119] Z. X. Guo, D. Y. Jiang, N. Hu, X. J. Yang, W. Zhang, Y. H. Duan, S. Gao, Q. C. Liang, T. Zheng, J. W. Lv, “Significant Enhancement of MgZnO Metal-Semiconductor-Metal Photodetectors via Coupling with Pt Nanoparticle Surface Plasmons,” Nanoscale Research Letters, vol. 13, pp. 168, (2018).
    [120] D. V. Thuan, N. T. |Khoa, S. W. Kim, J. S. Chung, S. H. Hur, E. J. Kim, S. H. Hahn, M. S. Wang, “Photo-Enhanced Selective Reduction of Nitroarenes Over Pt/ZnO Catalyst,” Catalysis Letters, vol. 147, pp. 2440-2447, (2017).
    [121] X. Liu, Y. Sun, M. Yu, Y. Yin, B. S. Du, W. Tang, T. T. Jiang, B. Yang, W. W. Cao and M. N. R. Ashfold, “Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles,” Sensors and Actuators B-Chemical, vol. 255, pp. 3384-3390, (2018).
    [122] J. Wu, L. F. Chen, S. Y. Li, C. Du, Q. Z. Zhang, C. L. Zheng, J. M. Xu, and K. X. Song, “Improved field emission performances for graphene/ZnO nanowires/graphene sandwich composites,” Materials Letters, vol. 213, (2018).
    [123] Y. C. Chen, X. M. Song, Z. B. Li, J. C. She, S. Z. Deng, N. S. Xu and J. Chen, “Penetration length-dependent hot electrons in the field emission from ZnO nanowires,” Applied Surface Science, vol. 427, pp. 573-580, (2018).
    [124] J. J. Ding, H. X. Chen, L. Ma, H. W. Fu and X. J. Wang, “Field emission of graphene oxide decorated ZnO nanorods grown on Fe alloy substrates,” Journal of Alloys and Compounds, vol. 729, pp. 538-544, (2017).
    [125] S. J. Young, C. C. Yang and L. T. Lai, “Review-Growth of Al-, Ga-, and In-Doped ZnO Nanostructures via a Low-Temperature Process and Their Application to Field Emission Devices and Ultraviolet Photosensors,” Journal of the Electrochemical Society, vol. 164, pp. B3013-B3028, (2017).
    [126] S. Germer, C. Cherkouk, L. Rebohle, M. Helm and W. Skorupa, “Si-based light emitter in an integrated photonic circuit for smart biosensor applications,” Proceedings of SPIE, vol. 8767, pp. 876710-1-876710-13, (2013).
    [127] K. K. Xu, L. W. Snyman and H. Aharoni “Si light-emitting device in integrated photonic CMOS ICs,” Optical Materials, vol. 69, pp. 274-282, (2017).
    [128] K. Steffy, G. Shanthi, A. S. Maroky and S. Selvakumar, “Synthesis and characterization of ZnO phytonanocomposite using Strychnos nux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer,” Journal of Advanced Research, vol. 9, pp. 69-77, (2018).
    [129] X. D. Meng, Y. X. Zhou, X. H. Zeng, X. B. Chen and Y. Q. Chu, “Oxygen vacancy mediated temperature dependent emission behavior of localized bound excitons in ZnO nanorods,” Journal of Luminescence, vol. 195, pp. 201-208, (2018).
    [130] S. Safa, M. Khajeh and R. Azimirad, “The effects of measuring atmosphere on ultraviolet photodetection performance of ZnO nanostructures,” Journal of Alloys and Compounds, vol. 735, pp. 1406-1413, (2018).
    [131] J. Wu, L. F. Chen, S. Y. Li, C. Du, Q. Z. Zhang, C. L. Zheng, J. M. Xu, and K. X. Song, “Improved field emission performances for graphene/ZnO nanowires/graphene sandwich composites,” Materials Letters, vol. 213, (2018).
    [132] Y. C. Chen, X. M. Song, Z. B. Li, J. C. She, S. Z. Deng, N. S. Xu and J. Chen, “Penetration length-dependent hot electrons in the field emission from ZnO nanowires,” Applied Surface Science, vol. 427, pp. 573-580, (2018).
    [133] J. J. Ding, H. X. Chen, L. Ma, H. W. Fu and X. J. Wang, “Field emission of graphene oxide decorated ZnO nanorods grown on Fe alloy substrates,” Journal of Alloys and Compounds, vol. 729, pp. 538-544, (2017).
    [134] C. P. Gu, H. H. Huang, J. R. Huang, Z. Jin, H. X. Zheng, N. Liu, M. Q. Li, J. H. Liu and F. L. Meng, “Chlorobenzene sensor based on Pt-decorated porous single-crystalline ZnO nanosheets,” Sensors and Actuators A-Physical, vol. 252, pp. 96-103, (2016).
    [135] S. J. Young, C. C. Yang and L. T. Lai, “Review-Growth of Al-, Ga-, and In-Doped ZnO Nanostructures via a Low-Temperature Process and Their Application to Field Emission Devices and Ultraviolet Photosensors,” Journal of the Electrochemical Society, vol. 164, pp. B3013-B3028, (2017).
    [136] C. Liu, L. P. Zhao, B. Q. Wang, P. Sun, Q. J. Wang, Y. Gao, X. S. Liang, T. Zhang, G. Y. Lu, “Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit,” J. Colloid. Interf. Sci., vol. 495, pp. 207-215, (2017).
    [137] K. C. Verma, R. K. Kotnala, “Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions,” J. Solid. State. Chem., vol. 246, pp. 150-159, (2017).
    [138] G. R. Dillip, G. B. Kumar, V. R. Bandi, M. Hareesh, B. D. P. Raju, S. W. Joo, L. K. Bharat, J. S. Yu, “Versatile host-sensitized white light emission in a single-component K3ZnB5O10:Dy3+ phosphor for ultraviolet converted light-emitting diodes,” J. Alloy. Compd., vol. 699, pp. 1108-1117, (2017).
    [139] P. F. Meng, J. Hu, J. L. He, “Low-residual-voltage ZnO varistor ceramics improved by multiple doping with gallium and indium,” Mater. Lett., vol. 195, pp. 209-202, (2017).
    [140] A. Zoshki, M. B. Rahmani, F. Masdarolomoor, S. H. Pilehrood, “Room Temperature Gas Sensing Properties of Polyaniline/ZnO Nanocomposite Thin Films,” J. Nanoelectron. Optoe., vol. 12, pp. 465-471, (2017).
    [141] S. B. Bashar, M. Suja, M. Morshed, F. Gao, J. L. Liu, “An Sb-doped p-type ZnO nanowire based random laser diode,” Adv. Nan. Phy., vol. 27, no. 6, pp. 065204, (2016).
    [142] S. L. Fu, Q. Li, S. Gao, G. Y. Wang, F. Zeng, F. Pan, “Quality-enhanced AIN epitaxial films grown on c-sapphire using ZnO buffer layer for SAW applications,” Appl. Surf. Sci., vol. 402, pp. 392-399, (2017).
    [143] C. B. Yao, K. X. Zhang, X. Wen, J. Li, Q. H. Li, S. B. Yang, “Morphologies, field-emission and ultrafast nonlinear optical behavior of pure and Ag-doped ZnO nanostructures,” J. Alloy. Compd., vol. 698, pp. 284-290, (2017).
    [144] T. Yoshida, J. B. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporte, D. Lincot, T. Oekermann, D. Schlettwein, H. Tada, D. Wohrle, K. Funabiki, M. Matsui, H. Miura, H. Yanagi “Electrodeposition of Inorganic/Organic Hybrid Thin Films,” Adv. Funct. Mater., vol. 19, pp. 17-43, (2009).
    [145] X. B. Cao, P. Chen, Y. Guo, “Decoration of Textured ZnO Nanowires Array with CdTe Quantum Dots: Enhanced Light-Trapping Effect and Photogenerated Charge Separation,” J. Phys. Chem. C., vol. 112, pp. 20560-20566, (2008).
    [146] C. Soci, A. Zhang, B. Xlang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano. Lett., vol. 7, pp. 1003-1009, (2007).
    [147] V. K. Kaushik, C. Mukherjee, T. Ganguli, P. K. Sen, “Electrical and optical characteristics of aerosol assisted CVD grown ZnO based thin film diode and transistor,” J. Alloy. Compd., vol. 696, pp. 727-735, (2017).
    [148] Y. M. Huang, Q. L. Ma, B. G. Zhai, “Controlled morphology of ZnO nanostructures by adjusting the zinc foil heating temperature in an air-filled box furnace,” Mater. Chem. Phys., vol. 147, pp. 788-795, (2014).
    [149] Y. M. Huang, Q. L. Ma, B. G. Zhai, “Controlled morphology of ZnO nanostructures by adjusting the zinc foil heating temperature in an air-filled box furnace,” Mater. Chem. Phys., vol. 147, pp. 788-795, (2014).
    [150] P. S. Dorraji, F. Jalali, “Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine,” Food. Chem., vol. 227, pp. 73-77, (2017).
    [151] T. Al-Harbi, “Hydrothermal synthesis and optical properties of Ni doped ZnO hexagonal nanodiscs,” J. Alloy. Compd., vol. 509, pp. 387-390, (2011).
    [152] L. Wei, X. Zhang, C. Lou, Z. Zhu, “An improved planar triode with ZnO nanopin field emitters,” IEEE Electr. Device. L., vol. 28, pp. 688-690, (2007).
    [153] R. Ahmad, N. Tripathy, M. S. Ahn, Y. B. Hahn, “Highly stable hydrazine chemical sensor based on vertically-aligned ZnO nanorods grown on electrode,” J. Colloid. Interf. Sci., vol. 494, pp. 153-158, (2017).
    [154] M. Norek, W. Zaleszczyk, G. Luka, B. Budner, D. Zasada, “Tailoring UV emission from a regular array of ZnO nanotubes by the geometrical parameters of the array and Al2O3 coating,” Ceram. Int., vol. 43, pp. 5693-5701, (2017).
    [155] C. L. Hsu, D. X. Hsu, T. J. Hsueh, S. P. Chang, S. J. Chang, “Transparent gas senor and photodetector based on Al doped ZnO nanowires synthesized on glass substrate,” Ceram. Int., vol. 43, pp. 5434-5440, (2017).
    [156] Y. Y. Zhang, L. Wang, J. Yu, H. Yang, G. X. Pan, L. F. Miao, Y. H. Song, “Three-dimensional macroporous carbon supported hierarchical ZnO-NiO nanosheets for electrochemical glucose sensing,” J. Alloy. Compd., vol. 698, pp. 800-806, (2017).
    [157] T. Oekermann, D. Zhang, T. Yoshida, H. Minoura, “Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization,” J. Phys. Chem. B., vol. 108, pp. 2227-2235, (2004).
    [158] C. C. Yang, H. C. Yu, Y. K. Su, M. Y. Chuang, C. H. Hsiao, T. H. Kao, “Noise Properties of Ag Nanoparticle-Decorated ZnO Nanorod UV Photodetectors,” IEEE Photonics Technology Letters, vol. 28, (2016).
    [159] J. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, J. Chastain, “Handbook of X-ray Electron Spectroscopy,” Perkin-Elmer, (1992).
    [160] G. R. Saad, A. A. Ezz and H. A. Ahmed, “Cure kinetics, thermal stability, and dielectric properties of epoxy/barium ferrite/polyaniline composites,” Thermochim. Acta., vol. 599, pp. 84-94, (2015).
    [161] S. Singh, Y. Kumar, H. Kumar, S. Vyas, C. Periasamy, P. Chakrabarti, S. Jit and S. H. Park, “A study of hydrothermally grown ZnO nanorod-based metal-semiconductor-metal UV detectors on glass substrates,” Nanomaterials and Nanotechnology, vol. 7, pp. 1847980417702144, (2017).
    [162] J. Wu and L. Y. Lin, “Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper,” Scientific Reports, vol. 7, pp. 43898, (2017).
    [163] O. Lupan, L. Chow, G. Chai, L. Chernyak, O. Lopatiuk-Tirpak and H. Heinrich, “Focused-ion-beam fabrication of ZnO nanorod-based UV photodetector using the in-situ lift-out technique,” Phys. Status. Solidi. A., vol. 205, pp. 2673-2678, (2008).
    [164] A. S. Ismail, M. H. Mamat, M. F. Malek, M. M. Yusoff, R. Mohamed, N. D. M. Sin, A. B. Suriani, M. Rusop, “Heterogeneous SnO2/ZnO nanoparticulate film: facile synthesis and humidity sensing capability,” Mater. Sci. Semi. Proc., vol. 81, pp.127-138, (2018).
    [165] X. L. Cha, F. F. Yu, Y. Fan, J. F. Chen, L. Y. Wang, Q. Xiang, Z. M. Duan, J. Q. Xu, “Superhydrophilic ZnO nanoneedle array: controllable in situ growth on QCM transducer and enhanced humidity sensing properties and mechanism,” Sens. Actuators B: Chem, vol. 263, pp. 436-444, (2018).
    [166] X. Le, X. Wang, J. Pang, Y. Liu, B. Fang, Z. Xu, C. Gao, Y. Xu, J. Xie, “A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure,” Sens. Actuators B: Chem, vol. 255, pp. 2454-2461, (2018).
    [167] N. M. Isa, N. Irawati, S. W. Harun, F. Ahmad, H. A. Rahman, M. H. M. Yusoff, “Multiwalled carbon nanotubes doped poly(Methyl MethAcrylate) microfiber for relative humidity sensing,” Sens. Actuators A: Phys., vol. 272, pp. 274-280, (2018).
    [168] D. Zhang, X. Zong, Z. Wu, Y. Zhang, “Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film,” Sens. Actuators B: Chem., vol. 266, pp. 52-62, (2018).
    [169] S. Wang, G. Xie, Y. Su, L. Su, Q. Zhang, H. Du, H. Tai, Y. Jiang, “Reduced graphene oxide-polyethylene oxide composite flims for humidity sensing via quartz crystal microbalance,” Sens. Actuators B: Chem., vol. 255, pp. 2203-2210, (2018).
    [170] K. Narimani, F. D. Nayeri, M. Kolahdouz, P. Ebrahimi, “Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods,” Sens. Actuators B: Chem., vol. 224, pp. 338-343, (2016).
    [171] N.F. Hsu, M. Chang, K.T. Hsu, “Rapid synthesis of ZnO dandelion-like nanostructures and their applications in humidity sensing and photocatalysis,” Mater. Sci. Semi. Proc., vol. 21, pp. 200-205, (2014).
    [172] Y. Zhao, B. Yang, J. Liu, “Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor,” Sens. Actuators B: Chem., vol. 271, pp. 256-263, (2018).
    [173] H.J. Jung, R. Koutavarapu, S. Lee, J.H. Kim, H.C. Choi, M.Y. Choi, “Enhanced photocatalytic activity of Au-doped Au@ZnO core-shell flower-like nanocomposites,” J. Alloys Comp., vol. 735, pp. 2058-2066, (2018).
    [174] H. Zhang, Z. Jia, “Development of fluorescent FRET probes for “off-on” detection of L-cysteine based on gold nanoparticles and porous silicon nanoparticles in ethanol solution,” Sensors, vol. 17, pp. 520, (2017).
    [175] C. C. Yang, Y. K. Su, M. Y. Chuang, T. H. Kao, H. C. Yu and C. H. Hsiao, “The Effect of Ga Doping Concentration on the Low-Frequency Noise Characteristics and Photoresponse Properties of ZnO Nanorods-Based UV Photodetectors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, pp. 233-239, (2015).
    [176] Singh, S. Kumar, Y. Kumar, H. Vyas, S. Periasamy, C. Chakrabarti, P. Jit S. Park, S. H. “A study of hydrothermally grown ZnO nanorod-based metal-semiconductor-metal UV detectors on glass substrates.” Nanomaterials and Nanotechnology, vol. 7, pp. 1847980417702144, (2017).
    [177] Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada, J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett., vol. 94, no. 2, pp. 023110, (2009).
    [178] Y. Li, et al., “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Applied Physics Letters, vol. 94, pp. 023110, (2009).
    [179] D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc. Faraday Trans. 1, vol. 70, pp. 1807–1818, (1974).

    無法下載圖示 校內:2023-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE