| 研究生: |
李佳穎 Li, Chia-Ying |
|---|---|
| 論文名稱: |
以嵌段結構與纖維形貌設計提升聚噻吩型共軛高分子於有機電化學電晶體之性能 Improving the Performance of Polythiophene-Based Conjugated Polymer in Organic Electrochemical Transistors with Block Architecture and Nanofibrillar Morphology Design |
| 指導教授: |
林彥丞
Lin, Yan-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 有機電化學電晶體 、聚(3-己基噻吩) 、聚丁基丙烯酸酯 、聚氧化乙烯 、嵌段共聚物 、自組裝 、奈米纖維 、元件穩定性 |
| 外文關鍵詞: | electrochemical transistors, poly(3-hexylthiophene), poly(n-butyl acrylate), polyethylene oxide, block copolymers, self-assembly, nanofibrils, device stability |
| 相關次數: | 點閱:48 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,有機電化學電晶體(OECT)因其能夠滿足低成本、高生物相容性和輕薄可穿戴式生物電子元件的需求而引起了研究熱潮。共軛高分子(CP)是OECT中常用的主動層材料,過去的研究大多集中在改良共軛高分子側鏈的親水性。本研究提出了兩種側鏈修飾之外的方法來提升OECT之性能。在第二章中,我們合成了三種以聚(3-己基噻吩)(P3HT)為共軛鏈段的嵌段共聚物(BCP)用於OECT,其中包含不同的絕緣鏈段(聚丙烯酸丁酯(PBA)、聚苯乙烯(PS)和聚環氧乙烷(PEO))。其中,P3HT-b-PBA展現出最優異的性能,其在170 F s−1 cm−1 V−1的載子遷移率和電容乘積(μC*)高於P3HT均聚物(58 F s−1 cm−1 V−1)。此外,P3HT-b-PBA在10次開關週期後的電流相對於第1圈電流維持了88%,而P3HT均聚物則為85%。P3HT-b-PBA性能的改善推測與PBA柔韌和疏水的主鏈有關。在經過電解液浸泡後,它的排列結構幾乎沒有被破壞,與P3HT均聚物和親水性嵌段共聚物P3HT-b-PEO相比,較能維持其原始結構。在第三章中,我們通過添加乙腈(ACN)並進行超音波震盪和紫外光照射,製備了三種P3HT奈米纖維。與僅溶於氯苯中形成的P3HT緻密薄膜相比,添加ACN使P3HT聚集並形成纖維形貌,且透過超音波震盪和紫外光照射促進奈米聚集體自組裝和形成π–π作用力。結果顯示,P3HT奈米纖維具有39.9 F s−1 cm−1 V−1的μC*,高於P3HT緻密薄膜的15.3 F s−1 cm−1 V−1,推測是由於P3HT奈米纖維具有更高的表面積與體積電容。然而,由於P3HT緻密薄膜的排列狀態在電化學摻雜時幾乎沒有被破壞,與P3HT奈米纖維相比,表現出更好的操作穩定性。但是P3HT奈米纖維表現出極高的側向結構排列和強烈的π–π堆疊特性,導致相對較高的載子遷移率。總結來說,本研究探討了聚噻吩型嵌段共聚物和奈米纖維在OECT中的應用,並研究了它們在結構與混合離子–電子傳輸性能上的關聯,為未來設計共軛高分子作為OECT主動層提供了新的思路。
The recent interest in developing low-cost, biocompatible, and lightweight bioelectronic devices has focused on organic electrochemical transistors (OECTs), which have the potential to fulfill these requirements. Conjugated polymers (CPs) are a popular candidate for the OECT active layer. Most previous research has focused on modifying the hydrophilic side chains of CPs. This study proposes two methods to enhance OECT performance beyond the side chain modification. In Chapter 2, we synthesized three types of poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) with different insulating blocks (poly(n-butyl acrylate) (PBA), polystyrene (PS), and poly(ethylene oxide) (PEO)) for OECT applications. P3HT-b-PBA showed superior performance with higher mobility and capacitance (μC*) at 170 F s−1 cm−1 V−1 than the P3HT homopolymer at 58 F s−1 cm−1 V−1. In addition, P3HT-b-PBA exhibits better stability with 88% retention over 10 ON/OFF switching cycles, while P3HT homopolymer shows 85% retention. The improved performance of P3HT-b-PBA is regarded to be related to its soft and hydrophobic backbone. It experienced minimal structural disorder when swelled by the electrolyte, maintaining its original structure compared to the counterparts of P3HT homopolymer and the hydrophilic BCP of P3HT-b-PEO. In Chapter 3, we fabricated three types of P3HT nanofibrils by adding acetonitrile (ACN), ultrasonication, and UV irradiation. In contrast to the P3HT dense film dissolved in chlorobenzene only, adding ACN makes P3HT aggregate and forms nanofibrillar morphology due to their poor interaction. In addition, ultrasonication and UV irradiation make the aggregates assemble and facilitate π–π interactions. P3HT nanofibrils exhibited better OECT performance with μC* at 39.9 F s−1 cm−1 V−1 than that of the P3HT dense films at 15.3 F s−1 cm−1 V−1, possibly due to the nanofibrils’ high surface area and capacitance. However, P3HT dense film presents better operational stability due to minimal structural disorder when electrochemical doped, maintaining its original packing compared to the P3HT nanofibrils. But P3HT nanofibrils show high edge-on orientation and strong π–π stacking characteristics, resulting in relatively high mobility. In summary, this study represents the exploration of P3HT-based BCPs and P3HT nanofibrils for OECT applications and investigates their structure–performance relationships in mixed ionic–electronic conductors. It offers another direction for designing P3HT-based CPs as active layers in OECT.
1. Müllen, K. and Scherf, U., Conjugated Polymers: Where We Come From, Where We Stand, and Where We Might Go. Macromolecular Chemistry and Physics, 2023. 224(3): p.2200337.
2. Sui, Y., Deng, Y., Du, T., Shi, Y., and Geng, Y., Design strategies of n-type conjugated polymers for organic thin-film transistors. Materials Chemistry Frontiers, 2019. 3(10): p.1932-1951.
3. Yang, J., Zhao, Z., Wang, S., Guo, Y., and Liu, Y., Insight into High-Performance Conjugated Polymers for Organic Field-Effect Transistors. Chem, 2018. 4(12): p.2748-2785.
4. Kim, M., Ryu, S.U., Park, S.A., Choi, K., Kim, T., Chung, D., and Park, T., Donor–Acceptor-Conjugated Polymer for High-Performance Organic Field-Effect Transistors: A Progress Report. Advanced Functional Materials, 2020. 30(20): p.1904545.
5. Gelinck, G., Heremans, P., Nomoto, K., and Anthopoulos, T.D., Organic Transistors in Optical Displays and Microelectronic Applications. Advanced Materials, 2010. 22(34): p.3778-3798.
6. Zhao, R., Liu, J., and Wang, L., Polymer Acceptors Containing B←N Units for Organic Photovoltaics. Accounts of Chemical Research, 2020. 53(8): p.1557-1567.
7. Zampetti, A., Minotto, A., and Cacialli, F., Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities. Advanced Functional Materials, 2019. 29(21): p.1807623.
8. Sirringhaus, H., 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Advanced Materials, 2014. 26(9): p.1319-1335.
9. Ohayon, D., Druet, V., and Inal, S., A guide for the characterization of organic electrochemical transistors and channel materials. Chemical Society Reviews, 2023. 52(3): p.1001-1023.
10. Rivnay, J., Inal, S., Salleo, A., Owens, R.M., Berggren, M., and Malliaras, G.G., Organic electrochemical transistors. Nature Reviews Materials, 2018. 3(2): p.17086.
11. Wang, N., Yang, A., Fu, Y., Li, Y., and Yan, F., Functionalized Organic Thin Film Transistors for Biosensing. Accounts of Chemical Research, 2019. 52(2): p.277-287.
12. Colucci, R., Barbosa, H.F.d.P., Günther, F., Cavassin, P., and Faria, G.C., Recent advances in modeling organic electrochemical transistors. Flexible and Printed Electronics, 2020. 5(1): p.013001.
13. Zeglio, E. and Inganäs, O., Active Materials for Organic Electrochemical Transistors. Advanced Materials, 2018. 30(44): p.1800941.
14. Liao, C., Zhang, M., Yao, M.Y., Hua, T., Li, L., and Yan, F., Flexible Organic Electronics in Biology: Materials and Devices. Advanced Materials, 2015. 27(46): p.7493-7527.
15. Jacobs, I.E., Lin, Y., Huang, Y., Ren, X., Simatos, D., Chen, C., Tjhe, D., Statz, M., Lai, L., Finn, P.A., Neal, W.G., D'Avino, G., Lemaur, V., Fratini, S., Beljonne, D., Strzalka, J., Nielsen, C.B., Barlow, S., Marder, S.R., McCulloch, I., and Sirringhaus, H., High-Efficiency Ion-Exchange Doping of Conducting Polymers. Advanced Materials, 2022. 34(22): p.2102988.
16. Chen, S., Surendran, A., Wu, X., Lee, S.Y., Stephen, M., and Leong, W.L., Recent Technological Advances in Fabrication and Application of Organic Electrochemical Transistors. Advanced Materials Technologies, 2020. 5(12): p.2000523.
17. Wang, Y., Zeglio, E., Wang, L., Cong, S., Zhu, G., Liao, H., Duan, J., Zhou, Y., Li, Z., Mawad, D., Herland, A., Yue, W., and McCulloch, I., Green Synthesis of Lactone-Based Conjugated Polymers for n-Type Organic Electrochemical Transistors. Advanced Functional Materials, 2022. 32(16): p.2111439.
18. Al-Refai, H.H., Ganash, A.A., and Hussein, M.A., Polythiophene and its derivatives –Based nanocomposites in electrochemical sensing: A mini review. Materials Today Communications, 2021. 26: p.101935.
19. Qing, X., Wang, Y., Zhang, Y., Ding, X., Zhong, W., Wang, D., Wang, W., Liu, Q., Liu, K., Li, M., and Lu, Z., Wearable Fiber-Based Organic Electrochemical Transistors as a Platform for Highly Sensitive Dopamine Monitoring. ACS Applied Materials & Interfaces, 2019. 11(14): p.13105-13113.
20. Fang, Y., Feng, J.Y., Shi, X., Yang, Y.Q., Wang, J.J., Sun, X., Li, W.J., Sun, X.M., and Peng, H.S., Coaxial fiber organic electrochemical transistor with high transconductance. Nano Research, 2023. 16(9): p.11885-11892.
21. Parlak, O., Keene, S.T., Marais, A., Curto, V.F., and Salleo, A., Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances, 2018. 4(7): p.eaar2904.
22. Khodagholy, D., Doublet, T., Quilichini, P., Gurfinkel, M., Leleux, P., Ghestem, A., Ismailova, E., Hervé, T., Sanaur, S., Bernard, C., and Malliaras, G.G., In vivo recordings of brain activity using organic transistors. Nature Communications, 2013. 4(1): p.1575.
23. Lee, H., Lee, S., Lee, W., Yokota, T., Fukuda, K., and Someya, T., Ultrathin Organic Electrochemical Transistor with Nonvolatile and Thin Gel Electrolyte for Long-Term Electrophysiological Monitoring. Advanced Functional Materials, 2019. 29(48): p.1906982.
24. Wu, X., Tam, T.L.D., Chen, S., Salim, T., Zhao, X., Zhou, Z., Lin, M., Xu, J., Loo, Y.-L., and Leong, W.L., All-Polymer Bulk-Heterojunction Organic Electrochemical Transistors with Balanced Ionic and Electronic Transport. Advanced Materials, 2022. 34(42): p.2206118.
25. Hamedi, M., Forchheimer, R., and Inganäs, O., Towards woven logic from organic electronic fibres. Nature Materials, 2007. 6(5): p.357-362.
26. Lin, P., Luo, X., Hsing, I.M., and Yan, F., Organic Electrochemical Transistors Integrated in Flexible Microfluidic Systems and Used for Label-Free DNA Sensing. Advanced Materials, 2011. 23(35): p.4035-4040.
27. Dai, Y., Dai, S., Li, N., Li, Y., Moser, M., Strzalka, J., Prominski, A., Liu, Y., Zhang, Q., Li, S., Hu, H., Liu, W., Chatterji, S., Cheng, P., Tian, B., McCulloch, I., Xu, J., and Wang, S., Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. Advanced Materials, 2022. 34(23): p.2201178.
28. Rivnay, J., Leleux, P., Ferro, M., Sessolo, M., Williamson, A., Koutsouras, D.A., Khodagholy, D., Ramuz, M., Strakosas, X., Owens, R.M., Benar, C., Badier, J.-M., Bernard, C., and Malliaras, G.G., High-performance transistors for bioelectronics through tuning of channel thickness. Science Advances. 1(4): p.e1400251.
29. Erhardt, A., Hochgesang, A., McNeill, C.R., and Thelakkat, M., A Competitive n-Type OECT Material via Copolymerization of Electron Deficient Building Blocks. Advanced Electronic Materials, 2023. 9(7): p.2300026.
30. Keene, S.T., Laulainen, J.E.M., Pandya, R., Moser, M., Schnedermann, C., Midgley, P.A., McCulloch, I., Rao, A., and Malliaras, G.G., Hole-limited electrochemical doping in conjugated polymers. Nature Materials, 2023. 22(9): p.1121-1127.
31. Flagg, L.Q., Giridharagopal, R., Guo, J., and Ginger, D.S., Anion-Dependent Doping and Charge Transport in Organic Electrochemical Transistors. Chemistry of Materials, 2018. 30(15): p.5380-5389.
32. Teng, X., Sun, J., Jiang, J., Ke, S., Li, J., Lou, Z., Hou, Y., Hu, Y., and Teng, F., Ion effects on salt-in-water electrolyte gated polymer electrochemical transistors. Organic Electronics, 2023. 120: p.106859.
33. Giovannitti, A., Nielsen, C.B., Sbircea, D.-T., Inal, S., Donahue, M., Niazi, M.R., Hanifi, D.A., Amassian, A., Malliaras, G.G., Rivnay, J., and McCulloch, I., N-type organic electrochemical transistors with stability in water. Nature Communications, 2016. 7(1): p.13066.
34. Giovannitti, A., Rashid, R.B., Thiburce, Q., Paulsen, B.D., Cendra, C., Thorley, K., Moia, D., Mefford, J.T., Hanifi, D., Weiyuan, D., Moser, M., Salleo, A., Nelson, J., McCulloch, I., and Rivnay, J., Energetic Control of Redox-Active Polymers toward Safe Organic Bioelectronic Materials. Advanced Materials, 2020. 32(16): p.1908047.
35. Schafer, E.A., Wu, R., Meli, D., Tropp, J., Moser, M., McCulloch, I., Paulsen, B.D., and Rivnay, J., Sources and Mechanism of Degradation in p-Type Thiophene-Based Organic Electrochemical Transistors. ACS Applied Electronic Materials, 2022. 4(4): p.1391-1404.
36. Moser, M., Hidalgo, T.C., Surgailis, J., Gladisch, J., Ghosh, S., Sheelamanthula, R., Thiburce, Q., Giovannitti, A., Salleo, A., Gasparini, N., Wadsworth, A., Zozoulenko, I., Berggren, M., Stavrinidou, E., Inal, S., and McCulloch, I., Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. Advanced Materials, 2020. 32(37): p.2002748.
37. Bard, A.J. and Faulkner, L.R., Fundamentals and applications. Electrochemical Methods, 2001. 2(482): p.580-632.
38. Flagg, L.Q., Bischak, C.G., Onorato, J.W., Rashid, R.B., Luscombe, C.K., and Ginger, D.S., Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors. Journal of the American Chemical Society, 2019. 141(10): p.4345-4354.
39. Wang, Y., Koklu, A., Zhong, Y., Chang, T., Guo, K., Zhao, C., Castillo, T.C.H., Bu, Z., Xiao, C., Yue, W., Ma, W., and Inal, S., Acceptor Functionalization via Green Chemistry Enables High-Performance n-Type Organic Electrochemical Transistors for Biosensing, Memory Applications. Advanced Functional Materials, 2023. n/a(n/a): p.2304103.
40. Sun, Z., Khau, B., Dong, H., Takacs, C.J., Yuan, S., Sun, M., Mosevitzky Lis, B., Nguyen, D., and Reichmanis, E., Carboxyl-Alkyl Functionalized Conjugated Polyelectrolytes for High Performance Organic Electrochemical Transistors. Chemistry of Materials, 2023. 35(21): p.9299-9312.
41. Zhang, S., Ding, P., Ruoko, T.-P., Wu, R., Stoeckel, M.-A., Massetti, M., Liu, T., Vagin, M., Meli, D., Kroon, R., Rivnay, J., and Fabiano, S., Toward Stable p-Type Thiophene-Based Organic Electrochemical Transistors. Advanced Functional Materials, 2023. 33(40): p.2302249.
42. Ohayon, D., Flagg, L.Q., Giugni, A., Wustoni, S., Li, R., Hidalgo Castillo, T.C., Emwas, A.-H., Sheelamanthula, R., McCulloch, I., Richter, L.J., and Inal, S., Salts as Additives: A Route to Improve Performance and Stability of n-Type Organic Electrochemical Transistors. ACS Materials Au, 2023. 3(3): p.242-254.
43. Feng, H., Lu, X., Wang, W., Kang, N.-G., and Mays, J.W., Block Copolymers: Synthesis, Self-Assembly, and Applications. Polymers, 2017. 9(10): p.494.
44. Wang, J.-T., Takashima, S., Wu, H.-C., Chiu, Y.-C., Chen, Y., Isono, T., Kakuchi, T., Satoh, T., and Chen, W.-C., Donor–Acceptor Poly(3-hexylthiophene)-block-Pendent Poly(isoindigo) with Dual Roles of Charge Transporting and Storage Layer for High-Performance Transistor-Type Memory Applications. Advanced Functional Materials, 2016. 26(16): p.2695-2705.
45. Chang, A.-C., Mulia, T., Wu, Y.-S., Weng, Y.-H., Lin, Y.-C., and Chen, W.-C., Recent developments of block copolymers in nonvolatile memory and artificial synapses. Journal of Polymer Science, 2023. 61(21): p.2633-2654.
46. Kim, H.-C., Park, S.-M., and Hinsberg, W.D., Block Copolymer Based Nanostructures: Materials, Processes, and Applications to Electronics. Chemical Reviews, 2010. 110(1): p.146-177.
47. Jin, S.-M., Kim, I., Lim, J.A., Ahn, H., and Lee, E., Interfacial Crystallization-Driven Assembly of Conjugated Polymers/Quantum Dots into Coaxial Hybrid Nanowires: Elucidation of Conjugated Polymer Arrangements by Electron Tomography. Advanced Functional Materials, 2016. 26(19): p.3226-3235.
48. Jeon, G.G., Lee, M., Nam, J., Park, W., Yang, M., Choi, J.-H., Yoon, D.K., Lee, E., Kim, B., and Kim, J.H., Simple Solvent Engineering for High-Mobility and Thermally Robust Conjugated Polymer Nanowire Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018. 10(35): p.29824-29830.
49. Khau, B.V., Savagian, L.R., De Keersmaecker, M., Gonzalez, M.A., and Reichmanis, E., Carboxylic Acid Functionalization Yields Solvent-Resistant Organic Electrochemical Transistors. ACS Materials Letters, 2019. 1(6): p.599-605.
50. Sung, M.-J., Seo, D.-G., Kim, J., Baek, H.E., Go, G.-T., Woo, S.-J., Kim, K.-N., Yang, H., Kim, Y.-H., and Lee, T.-W., Overcoming the Trade-off Between Efficient Electrochemical Doping and High State Retention in Electrolyte-Gated Organic Synaptic Transistors. Advanced Functional Materials, 2024. 34(14): p.2312546.
51. Wang, J.-T., Takshima, S., Wu, H.-C., Shih, C.-C., Isono, T., Kakuchi, T., Satoh, T., and Chen, W.-C., Stretchable Conjugated Rod–Coil Poly(3-hexylthiophene)-block-poly(butyl acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules, 2017. 50(4): p.1442-1452.
52. Yang, W.-C., Lin, Y.-C., Inagaki, S., Shimizu, H., Ercan, E., Hsu, L.-C., Chueh, C.-C., Higashihara, T., and Chen, W.-C., Low-Energy-Consumption and Electret-Free Photosynaptic Transistor Utilizing Poly(3-hexylthiophene)-Based Conjugated Block Copolymers. Advanced Science, 2022. 9(8): p.2105190.
53. Kamps, A.C., Fryd, M., and Park, S.-J., Hierarchical Self-Assembly of Amphiphilic Semiconducting Polymers into Isolated, Bundled, and Branched Nanofibers. ACS Nano, 2012. 6(3): p.2844-2852.
54. Yang, H., Xia, H., Wang, G., Peng, J., and Qiu, F., Insights into poly(3-hexylthiophene)-b-poly(ethylene oxide) block copolymer: Synthesis and solvent-induced structure formation in thin films. Journal of Polymer Science Part A: Polymer Chemistry, 2012. 50(24): p.5060-5067.
55. Thomas, E.M., Brady, M.A., Nakayama, H., Popere, B.C., Segalman, R.A., and Chabinyc, M.L., X-Ray Scattering Reveals Ion-Induced Microstructural Changes During Electrochemical Gating of Poly(3-Hexylthiophene). Advanced Functional Materials, 2018. 28(44): p.1803687.
56. Paterson, A.F., Faber, H., Savva, A., Nikiforidis, G., Gedda, M., Hidalgo, T.C., Chen, X., McCulloch, I., Anthopoulos, T.D., and Inal, S., On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors. Advanced Materials, 2019. 31(37): p.1902291.
57. Colaneri, N., Nowak, M., Spiegel, D., Hotta, S., and Heeger, A.J., Bipolarons in poly(3-methylthiophene): Spectroscopic, magnetic, and electrochemical measurements. Physical Review B, 1987. 36(15): p.7964-7968.
58. Guimard, N.K., Gomez, N., and Schmidt, C.E., Conducting polymers in biomedical engineering. Progress in Polymer Science, 2007. 32(8): p.876-921.
59. Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., and Fréchet, J.M.J., Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight. Advanced Materials, 2003. 15(18): p.1519-1522.
60. Mahmood, A. and Wang, J.-L., A Review of Grazing Incidence Small- and Wide-Angle X-Ray Scattering Techniques for Exploring the Film Morphology of Organic Solar Cells. Solar RRL, 2020. 4(10): p.2000337.
61. Duan, J., Zhu, G., Lan, L., Chen, J., Zhu, X., Chen, C., Yu, Y., Liao, H., Li, Z., McCulloch, I., and Yue, W., Electron-Deficient Polycyclic Molecules via Ring Fusion for n-Type Organic Electrochemical Transistors. Angewandte Chemie International Edition, 2023. 62(1): p.e202213737.
62. Boudouris, B.W., Ho, V., Jimison, L.H., Toney, M.F., Salleo, A., and Segalman, R.A., Real-Time Observation of Poly(3-alkylthiophene) Crystallization and Correlation with Transient Optoelectronic Properties. Macromolecules, 2011. 44(17): p.6653-6658.
63. Das, P., Zayat, B., Wei, Q., Salamat, C.Z., Magdău, I.-B., Elizalde-Segovia, R., Rawlings, D., Lee, D., Pace, G., Irshad, A., Ye, L., Schmitt, A., Segalman, R.A., Miller, T.F., III, Tolbert, S.H., Dunn, B.S., Narayan, S.R., and Thompson, B.C., Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries. Chemistry of Materials, 2020. 32(21): p.9176-9189.
64. Huang, L., Wang, Z., Chen, J., Wang, B., Chen, Y., Huang, W., Chi, L., Marks, T.J., and Facchetti, A., Porous Semiconducting Polymers Enable High-Performance Electrochemical Transistors. Advanced Materials, 2021. 33(14): p.2007041.
65. Oh, S.-H., Oh, M., Lee, S., Kim, D.-K., Lee, J.-S., Lee, S.-K., Kang, S.-K., and Joo, Y.-C., Fast and Durable Nanofiber Mat Channel Organic Electrochemical Transistors. ACS Applied Materials & Interfaces, 2023. 15(33): p.39614-39624.
66. Chang, M., Lee, J., Chu, P.-H., Choi, D., Park, B., and Reichmanis, E., Anisotropic Assembly of Conjugated Polymer Nanocrystallites for Enhanced Charge Transport. ACS Applied Materials & Interfaces, 2014. 6(23): p.21541-21549.
67. Kim, B.-G., Kim, M.-S., and Kim, J., Ultrasonic-Assisted Nanodimensional Self-Assembly of Poly-3-hexylthiophene for Organic Photovoltaic Cells. ACS Nano, 2010. 4(4): p.2160-2166.