簡易檢索 / 詳目顯示

研究生: 翁大為
Weng, Da-Wei
論文名稱: 研磨製程製作氧化鎳電極介面層於有機鹵化鉛鈣鈦礦發光二極體之研究
Grinding Nickel Oxide Electrode Interlayer in Organolead Halide Perovskite-Based Light-Emitting Diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
共同指導教授: 朱治偉
Chu, Chih-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 有機鈣鈦礦發光二極體氧化鎳奈米粒子電極界面層金屬氧化物
外文關鍵詞: organolead halide perovskite-based light-emitting diodes, nickel oxide nanoparticles, hole transporting layer, metal oxide
相關次數: 點閱:95下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要研究鈣鈦礦發光二極體中的P型電極介面層,在先前的研究中,本實驗室提出一個以純物理研磨的方式製備氧化鎳奈米粒子(NiO Nanoparticles),其尺度達到數十奈米等級,後將其應用在太陽能電池中作為取代PEDOT:PSS電洞傳輸層之角色並達到13%的效率。在本論文中改進其研磨方式後,以噴塗的方式讓製程更加快速且穩定,並且成膜特性上表現更加的完善。相較於溶膠凝膠法(sol-gel)的氧化鎳電洞傳輸層製備方法,以及先前研究所提出的以旋轉塗佈溶液之製程,噴塗能有更好的表面均勻性、更快速且穩定的製程,同時其平均亮度能達到21,000 cd/m2,並且於大面積元件下仍舊有穩定的成膜特性,於未來發展有良好的前景。
    本篇論文中我們將對以研磨製程製備的Grinding NiO NPs進行多種材料特性之量測及分析,例如:粒徑分析、能階分析、元素分析,接著多方面比較此研磨製程與先前研究之氧化鎳製備方試做比較,例如:薄膜形貌分析、光致發光、AFM、SEM,並成功以此噴塗製程製備出一大面積 下仍能均勻複合放光之鈣鈦礦發光二極體。

    SUMMARY
    During this thesis, we will focus on p-type electrode-interlayer of perovskite light-emitting diodes. In a previous research, we mentioned a physical grinding method as the precursor solution preparation of nickel oxide nanoparticles which can get a uniform solution with less than one hundred nanometer of the particle size and reach 13% by substituting PEDOT:PSS as the HTL in organolead iodide perovskite-based solar cell. By utilize the spray coating method, we can get a very uniform nickel oxide hole transporting layer and successfully apply it as the HTL into light-emitting diodes to substitute sol-gel NiOx. With this fast, low cost and low temperature process comparing to the traditional sol-gel NiOx which needs a high temperature condition to form the film, we can finish the HTL in even 1 minute without annealing and still reach the maximum brightness 21,000 cd/m2.
    We study several physical properties of grinding NiO NPs such as partical size, UPS, XPS and XRD analysis. Furthermore, we take a detail comparison of sol-gel NiOx, PEDOT:PSS and grinding NiO NPs such as thin film, PL, AFM, SEM and TRPL analysis. Finally, we successfully demonstrate a NiO NPs based device which can reach the maximum brightness 21,000 cd/m2. In addition, it only cost one minute to form the film and without any annealing. With the process mention in the above section, we can also successfully build large area light-emitting diodes devices and light up uniformly.

    Introduction
    In conventional planar heterojunction solar cell, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate which is known as PEDOT:PSS is the most common used material as a hole transporting layer(HTL). PEDOT:PSS has the weak point that it’s an acid material which may lead to a corrosion to the indium tin oxide(ITO). Also, PEDOT:PSS contains hydrogen monoxide which may stongly affect our active layer, also known as perovskite, which is very sensitive to moisture. According to improve this issue, J. Y. Jeng et al. and the group successfully substitute PEDOT:PSS by nickel oxide (NiOx) and act as a hole transporting material and apply into planar heterojunction perovskite solar cells.
    NiOx is kind of material which has the characteristics that can block the electron from passing through it, an inorganic material that maybe more stable, good energy level which fits the active layer. Knowing that the process of the NiOx that researchers follow recently are mostly contain complex steps, such as high temperature, high vacuum condition and chemical synthesis, which may lead to some uncertain factors that will affect the device intensely.

    目錄 摘要 I 致謝 VIII 目錄 X 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 鈣鈦礦材料的發展 3 1-3 研究動機與大綱 7 1-3-1 研究動機 7 1-3-2 論文大綱 8 第二章 鈣鈦礦發光二極體發展 9 2-1 前言 9 2-2 有機電激發光元件的結構及操作原理 11 2-3 鈣鈦礦薄膜的製作方法 15 2-3-1 一步驟製程法(One-step approach) 15 2-3-2 兩步驟製程法(Two-step approach) 26 2-3-3 氣相沉積法(Vapor-assisted film deposition approach) 27 2-3-4 薄膜後處理 28 2-4 電洞傳輸層簡介 32 2-4-1導電高分子起源 32 2-4-2 PEDOT:PSS介紹 33 2-5 本章結論 34 第三章 元件製作與實驗步驟 36 3-1 前言 36 3-2 鈣鈦礦發光二極體的製備過程 37 3-2-1 ITO基板清潔及圖案化 37 3-2-2 ITO基板清洗 37 3-2-3 電洞傳輸層製作 38 3-2-4 主動層製作 40 3-2-5 電子傳輸層製作 41 3-2-6 陰極製作 42 3-3 元件光電特性量測 44 3-3-1 電流-亮度-電壓量測系統 44 3-3-2 掃描式電子顯微鏡(Scanning electron microscope ) 44 3-3-3 光致發光光譜儀 45 3-3-4 紫外-可見光(UV-Vis)吸收光譜儀 46 3-3-5 X光繞射儀 47 3-3-6 紫外光電子能譜儀 48 3-4 本章結論 48 第四章 研磨氧化鎳奈米粒子作為電洞傳輸層之鈣鈦礦發光二極體元件 50 4-1 前言 50 4-2 氧化鎳奈米粒子之物理特性分析 53 4-2-1 動態光散射儀分析 53 4-2-2 X射線繞射分析 56 4-2-3 X射線光電子光譜分析 57 4-2-4 紫外光電子光譜分析 61 4-3 不同NiO/NiOx製備製程之薄膜及元件分析 64 4-3-1 電洞傳輸層形貌分析 64 4-3-2 電動傳輸層吸收圖譜分析 67 4-3-3 光致螢光光譜儀量測分析 68 4-3-4 主動層形貌分析 69 4-3-5 元件電流-電壓及亮度-電壓特性曲線分析 71 4-3-6 大面積製程應用 75 4-4 本章結論 78 第五章 總結與未來工作 79 5-1 總結 79 5-2 未來工作展望 80 參考文獻 81   圖目錄 圖1-1、各類型太陽能電池效率演進圖 [5] 3 圖1-2、鄧青雲團隊報導的單異質接面雙層結構[6] 5 圖1-3、共軛高分子材料PPV 5 圖1-4、旋轉塗佈法之示意圖 6 圖2-1、鈣鈦礦晶體結構圖[11] 9 圖2-2、單層膜元件之結構示意圖 14 圖2-3、多層結構元件之能階示意圖 14 圖2-4、(a)不同PbI2和MAI莫耳比例形成鈣鈦礦薄膜SEM圖,(b)於100℃下不同退火時間SEM圖,(c)不同退火溫度之SEM圖 [12] 16 圖2-5、(a)使用氯苯去控制結晶的速度流程圖[16],(b)溶劑工程法示意圖 [17] 18 圖2-6、雙牙基鹵化物在形成鈣鈦礦結晶原理示意圖[24] 20 圖2-7、添加不同雙牙基鹵化物後鈣鈦礦薄膜之SEM圖 [23] 20 圖2-8、PbI2、HPbI3、FAPbI3晶體結構示意圖 [26] 22 圖2-9、(a)、(b)以PbCl2,(c)、(d)以PbI2,(e)、(f)以PbCl2製備鈣鈦礦薄膜SEM圖 [31] 24 圖2-10、(a)基板預熱實驗流程圖,(b)不同預熱基板溫度成長鈣鈦礦薄膜SEM圖 [37] 25 圖2-11、(a)連續溶液沉積法,(b)連續溶液沉積法元件截面SEM圖 [38],(c)兩步驟擴散沉積法,(d)兩步驟擴散沉積法元件截面SEM圖 [39] 27 圖2-12、(a)氣相沉積示意圖,(b)鈣鈦礦薄膜SEM圖,(c)鈣鈦礦太陽能電池結構截面SEM圖 [42] 28 圖2-13:(a)~(e)分別為105℃退火處理鈣鈦礦薄膜15分鐘、1小時、1.5小時、2小時和3小時的SEM圖,(f)鈣鈦礦薄膜不同退火時間晶粒大小的分布情形[39] 30 圖2-14:鈣鈦礦經由MA氣體處理再結晶影像圖[47] 32 圖2-15:(a)PEDOT化學結構圖,(b)PSS化學結構圖 34 圖3-1、本實驗室所製作的鈣鈦礦發光二極體之元件結構圖 36 圖3-2、研磨製程示意圖 39 圖3-3、噴塗手法示意圖 40 圖3-4、元件之開放式載台與圖樣遮蔽載台 42 圖3-5、電子傳輸層材料TPBi 42 圖3-6、元件外觀圖 43 圖3-7、Nova NanoSEM 200 Scanning electron microscope 儀器圖 45 圖3-8、Jobin Yvon HR800 PL instrument 儀器圖 46 圖3-9、Jasco V-670 UV-vis spectroscopy儀器圖 47 圖3-10、X光繞射儀操作之示意圖 48 圖4-1、元件結構及其能階之示意圖[8,51-52] 52 圖4-2、研磨機台儀器照 54 圖4-3、研磨時間對粒徑分析圖 54 圖4-4、不同研磨時間之氧化鎳奈米粒子散佈程度示意圖 55 圖4-5: (a)氧化鎳原始材料(粉末狀), (b)經二次研磨之氧化鎳於IPA中 55 圖4-6 氧化鎳經研磨前後之XRD圖譜 57 圖4-7、NiO/NiOx之Ni 2p3/2 軌域XPS量測頻譜 59 圖4-8、NiO/NiOx之NiO 1s 軌域XPS量測頻譜 60 圖4-9、Ni 2p3/2 軌域XPS頻譜參考文獻[53] 60 圖4-10、Ni之O 1s 軌域XPS頻譜參考文獻[53] 60 圖4-11、Ni之O 1s 軌域XPS頻譜參考文獻[54] 61 圖4-12、NiO和NiOx之UPS 頻譜量測圖 62 圖4-13、NiO之吸收量測及tauc圖分析 63 圖4-14、NiOx之吸收量測及tauc圖分析 63 圖4-15、氧化鎳薄膜(a)元件發光情形(b)SEM量測圖 64 圖4-16、旋轉塗佈氧化鎳薄膜之元件電流-電壓曲線 65 圖4-17、(a)噴塗20秒之氧化鎳SEM量測(b)噴塗30之氧化鎳SEM量測(c)噴塗40之氧化鎳SEM量測 66 圖4-18、(d)噴塗20秒之氧化鎳AFM量測(e)噴塗30秒之氧化鎳AFM量測(f)噴塗20秒之氧化鎳AFM量測 66 圖4-19、NiO/NiOx SEM量測比較圖 67 圖4-20、NiO/NiOx AFM量測比較圖 67 圖4-21、氧化鎳吸收圖譜分析 68 圖4-22、鉛溴鈣鈦礦於氧化鎳電洞傳輸層上之光致發光量測 69 圖4-23、鉛溴鈣鈦礦於氧化鎳電洞傳輸層上之SEM量測 70 圖4-24、鉛溴鈣鈦礦於氧化鎳電洞傳輸層上之AFM量測 70 圖4-25、鉛溴鈣鈦礦於氧化鎳電洞傳輸層上之SEM橫截面量測 71 圖4-26、鉛溴鈣鈦礦於氧化鎳電洞傳輸層之元件電流-電壓曲線 72 圖4-27、鉛溴鈣鈦礦於氧化鎳電洞傳輸層之元件電流效率-電壓曲線 73 圖4-28、鉛溴鈣鈦礦於氧化鎳電洞傳輸層之元件亮度-電流曲線 73 圖4-29、NiO/NiOx元件電流-電壓-亮度曲線 74 圖4-30、NiO/NiOx元件電流效率-電流密度曲線 75 圖4-31、NiO/NiOx元件電致發光強度-放光波長曲線 75 圖4-32、鉛溴鈣鈦礦於氧化鎳電洞傳輸層之大面積元件工作圖 76 圖4-33、大面積元件量測點位示意圖 77

    參考文獻
    [1] J. Kido, M. Kimura, K. Nagai, “Multilayer white light-emitting organic electroluminescent device”, Science 267, 1332 (1995).
    [2] S. R. Forrest, “The road to high efficiency organic light emitting devices”, Org. Electron. 4, 45 (2003).
    [3] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREL, accessed 27 June 2017).
    [4] J. C. -Frankel, “Newcomer juices up the race to harness sunlight”, Science 342, 1438 (2013).
    [5] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREAL, accessed 27 June 2017).
    [6] C. W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 57, 913 (1987).
    [7] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539 (1990).
    [8] J. -Y. Jeng, K. -C. Chen, T. -Y. Chiang, P. -Y. Lin, T. -D. Tsai, Y. -C. Chang, T. -F. Guo, P. Chen, T. -C. Wen, Y. -J. Hsu, “Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells”, Adv. Mater. 26, 4107 (2014).
    [9] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications”, Adv. Funct. Mater. (eds A. Tiwari and L. Uzun), John Wiley & Sons, Inc., Hoboken, NJ, USA, 535 (2015).
    [10] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phy. Chem. C 118, 5615 (2014).
    [11] M. A. Green, A. Ho-Baillie, H. J. Snaith, “The emergence of perovskite solar cells”, Nat. Photonics 8, 506 (2014).
    [12] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process”, Energy Environ. Sci. 7, 2359 (2014).
    [13] G. Hodes, “Perovskite-based solar cells”, Science 342, 317 (2013).
    [14] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells”, Adv. Funct. Mater. 24, 151 (2014).
    [15] R. F. Service, “Turning up the light”, Science 342, 794 (2013).
    [16] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells”, Nat. Mater. 13, 897 (2014).
    [17] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. -B. Cheng, L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells”, Angew. Chem. 126, 10056 (2014).
    [18] M. Nam, M. Cha, H. H. Lee, K. Hur, K. -T. Lee, J. Yoo, I. K. Han, S. J. Kwon, D. -H. Ko, “Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions”, Nat. Commun. 8, 14068 (2017).
    [19] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nat. Mater. 6, 497 (2007).
    [20] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency”, Nat. Mater. 11, 44 (2012).
    [21] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, “Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers”, Energy Environ. Sci. 8, 1544 (2015).
    [22] K. Hwang, Y. -S. Jung, Y. -J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D. -Y. Kim, D. Vak, “Toward large scale roll-to-roll production of fully printed perovskite solar cells”, Adv. Mater. 27, 1241 (2015).
    [23] C. -C. Chueh, C. -Y. Liao, F. Zuo, S. T. Williams, P. -W. Lianga, A. K. -Y. Jen, “The roles of alkyl halide additives in enhancing perovskite solar cell performance”, J. Mater. Chem. A 3, 9058 (2015).
    [24] P. -W. Liang, C. -Y. Liao, C. -C. Chueh, F. Zuo, S. T. Williams, X. -K. Xin, J. Lin, A. K. -Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells”, Adv. Mater. 26, 3748 (2014).
    [25] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci. 7, 982 (2014).
    [26] F. Wang, H. Yu, H. Xu, N. Zhao, “HPbI3: A new precursor compound for highly efficient solution-processed perovskite solar cells”, Adv. Funct. Mater. 7, 1120 (2015).
    [27] J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. -W. Lee, S. H. Im, “Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate”, Adv. Mater. 27, 3424 (2015).
    [28] H. -B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells”, Nanoscale 6, 6679 (2014).
    [29] Y. -J. Jeon, S. Lee, R. Kang, J. -E. Kim, J. -S. Yeo, S. -H. Lee, S. -S. Kim, J. -M. Yun, D. -Y. Kim, “Planar heterojunction perovskite solar cells with superior reproducibility”, Sci. Rep. 4, 6953 (2014).
    [30] C. -Y. Chang, C. -Y. Chu, Y. -C. Huang, C. -W. Huang, S. -Y. Chang, C. -A. Chen, C. -Y. Chao, W. -F. Su, “Tuning perovskite morphology by polymer additive for high efficiency solar cell”, ACS Appl. Mater. Interfaces 7, 4955 (2015).
    [31] W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells”, Nat. Commun. 6, 6124 (2015).
    [32] D. T. Moore, H. Sai, K. W. Tan, L. A. Estroff, U. Wiesner, “Impact of the organic halide salt on final perovskite composition for photovoltaic applications”, APL Mater. 2, 081802 (2014)
    [33] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science 338, 643 (2012).
    [34] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3”, Science 342, 344 (2013).
    [35] L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, “Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer”, J. Am. Chem. Soc. 7, 2674 (2015).
    [36] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, S. Hayase, “All-solid perovskite solar cells with HOCO-R-NH3+I– anchor-group inserted between porous titania and perovskite”, J. Phys. Chem. C 118, 16651 (2014).
    [37] W. Nie, H. Tsai, R. Asadpour, J. -C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. -L. Wang, A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science 347, 522 (2015).
    [38] J. Burschka, N. Pellet, S. -J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 499, 316 (2013).
    [39] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gaobc, J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci. 7, 2619 (2014).
    [40] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapor deposition”, Nature 501, 395 (2013)
    [41] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. -P. C. Baena, J. -D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites”, Science Advances 2, e1501170 (2016).
    [42] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. -S. Duan, H. -H. Wang, Y. Liu, G. Li, Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, J. Am. Chem. Soc. 136, 622 (2014).
    [43] Q. Chen, H. Zhou, T. -B. Song, S. Luo, Z. Hong, H. -S. Duan, L. Dou, Y. Liu, Y. Yang, “Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells”, Nano Lett. 14, 4158 (2014).
    [44] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864 (2005).
    [45] G. Li, R. Zhu, Y. Yang, “Polymer solar cells”, Nat. Photonics 6, 153 (2012).
    [46] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement”, Adv. Mater. 26, 6503 (2014).
    [47] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, G. Cui, “Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells”, Angew. Chem. Int. Ed. 54, 9705 (2015).
    [48] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite-Based Light-Emitting Diodes”, Adv. Mater. 28, 8687 (2016).
    [49] H. Cho, S. -H. Jeong, M. -H. Park, Y. -H. Kim, C. Wolf, C. -L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. -W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science 350, 1222 (2015).
    [50] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Adv. Mater. 28, 8687 (2016).
    [51] W. -C. Lai, K. -W. Lin, T. -F. Guo, J. Lee, “Perovskite-based solar cells with nickel-oxidized nickel oxide hole transfer layer”, IEEE Trans. Electron Devices 62, 1590 (2015).
    [52] W. -C. Lai, K. -W. Lin, Y. -T. Wang, T. -Y. Chiang, P. Chen, T. -F. Guo, “Oxidized Ni/Au transparent electrode in efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells”, Adv. Mater. 28, 3290 (2016).
    [53] X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts”, ACS Nano. 10, 3630(2016).
    [54] M. -A. Peck, M. -A. Langell, “Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS”, Chem. Mater. 24, 4483-4490 (2012).

    無法下載圖示 校內:2023-10-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE