| 研究生: |
翁大為 Weng, Da-Wei |
|---|---|
| 論文名稱: |
研磨製程製作氧化鎳電極介面層於有機鹵化鉛鈣鈦礦發光二極體之研究 Grinding Nickel Oxide Electrode Interlayer in Organolead Halide Perovskite-Based Light-Emitting Diodes |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 共同指導教授: |
朱治偉
Chu, Chih-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 有機鈣鈦礦發光二極體 、氧化鎳奈米粒子 、電極界面層 、金屬氧化物 |
| 外文關鍵詞: | organolead halide perovskite-based light-emitting diodes, nickel oxide nanoparticles, hole transporting layer, metal oxide |
| 相關次數: | 點閱:95 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要研究鈣鈦礦發光二極體中的P型電極介面層,在先前的研究中,本實驗室提出一個以純物理研磨的方式製備氧化鎳奈米粒子(NiO Nanoparticles),其尺度達到數十奈米等級,後將其應用在太陽能電池中作為取代PEDOT:PSS電洞傳輸層之角色並達到13%的效率。在本論文中改進其研磨方式後,以噴塗的方式讓製程更加快速且穩定,並且成膜特性上表現更加的完善。相較於溶膠凝膠法(sol-gel)的氧化鎳電洞傳輸層製備方法,以及先前研究所提出的以旋轉塗佈溶液之製程,噴塗能有更好的表面均勻性、更快速且穩定的製程,同時其平均亮度能達到21,000 cd/m2,並且於大面積元件下仍舊有穩定的成膜特性,於未來發展有良好的前景。
本篇論文中我們將對以研磨製程製備的Grinding NiO NPs進行多種材料特性之量測及分析,例如:粒徑分析、能階分析、元素分析,接著多方面比較此研磨製程與先前研究之氧化鎳製備方試做比較,例如:薄膜形貌分析、光致發光、AFM、SEM,並成功以此噴塗製程製備出一大面積 下仍能均勻複合放光之鈣鈦礦發光二極體。
SUMMARY
During this thesis, we will focus on p-type electrode-interlayer of perovskite light-emitting diodes. In a previous research, we mentioned a physical grinding method as the precursor solution preparation of nickel oxide nanoparticles which can get a uniform solution with less than one hundred nanometer of the particle size and reach 13% by substituting PEDOT:PSS as the HTL in organolead iodide perovskite-based solar cell. By utilize the spray coating method, we can get a very uniform nickel oxide hole transporting layer and successfully apply it as the HTL into light-emitting diodes to substitute sol-gel NiOx. With this fast, low cost and low temperature process comparing to the traditional sol-gel NiOx which needs a high temperature condition to form the film, we can finish the HTL in even 1 minute without annealing and still reach the maximum brightness 21,000 cd/m2.
We study several physical properties of grinding NiO NPs such as partical size, UPS, XPS and XRD analysis. Furthermore, we take a detail comparison of sol-gel NiOx, PEDOT:PSS and grinding NiO NPs such as thin film, PL, AFM, SEM and TRPL analysis. Finally, we successfully demonstrate a NiO NPs based device which can reach the maximum brightness 21,000 cd/m2. In addition, it only cost one minute to form the film and without any annealing. With the process mention in the above section, we can also successfully build large area light-emitting diodes devices and light up uniformly.
Introduction
In conventional planar heterojunction solar cell, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate which is known as PEDOT:PSS is the most common used material as a hole transporting layer(HTL). PEDOT:PSS has the weak point that it’s an acid material which may lead to a corrosion to the indium tin oxide(ITO). Also, PEDOT:PSS contains hydrogen monoxide which may stongly affect our active layer, also known as perovskite, which is very sensitive to moisture. According to improve this issue, J. Y. Jeng et al. and the group successfully substitute PEDOT:PSS by nickel oxide (NiOx) and act as a hole transporting material and apply into planar heterojunction perovskite solar cells.
NiOx is kind of material which has the characteristics that can block the electron from passing through it, an inorganic material that maybe more stable, good energy level which fits the active layer. Knowing that the process of the NiOx that researchers follow recently are mostly contain complex steps, such as high temperature, high vacuum condition and chemical synthesis, which may lead to some uncertain factors that will affect the device intensely.
參考文獻
[1] J. Kido, M. Kimura, K. Nagai, “Multilayer white light-emitting organic electroluminescent device”, Science 267, 1332 (1995).
[2] S. R. Forrest, “The road to high efficiency organic light emitting devices”, Org. Electron. 4, 45 (2003).
[3] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREL, accessed 27 June 2017).
[4] J. C. -Frankel, “Newcomer juices up the race to harness sunlight”, Science 342, 1438 (2013).
[5] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREAL, accessed 27 June 2017).
[6] C. W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 57, 913 (1987).
[7] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539 (1990).
[8] J. -Y. Jeng, K. -C. Chen, T. -Y. Chiang, P. -Y. Lin, T. -D. Tsai, Y. -C. Chang, T. -F. Guo, P. Chen, T. -C. Wen, Y. -J. Hsu, “Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells”, Adv. Mater. 26, 4107 (2014).
[9] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications”, Adv. Funct. Mater. (eds A. Tiwari and L. Uzun), John Wiley & Sons, Inc., Hoboken, NJ, USA, 535 (2015).
[10] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phy. Chem. C 118, 5615 (2014).
[11] M. A. Green, A. Ho-Baillie, H. J. Snaith, “The emergence of perovskite solar cells”, Nat. Photonics 8, 506 (2014).
[12] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process”, Energy Environ. Sci. 7, 2359 (2014).
[13] G. Hodes, “Perovskite-based solar cells”, Science 342, 317 (2013).
[14] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells”, Adv. Funct. Mater. 24, 151 (2014).
[15] R. F. Service, “Turning up the light”, Science 342, 794 (2013).
[16] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells”, Nat. Mater. 13, 897 (2014).
[17] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. -B. Cheng, L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells”, Angew. Chem. 126, 10056 (2014).
[18] M. Nam, M. Cha, H. H. Lee, K. Hur, K. -T. Lee, J. Yoo, I. K. Han, S. J. Kwon, D. -H. Ko, “Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions”, Nat. Commun. 8, 14068 (2017).
[19] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nat. Mater. 6, 497 (2007).
[20] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, “Solution-processed small-molecule solar cells with 6.7% efficiency”, Nat. Mater. 11, 44 (2012).
[21] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, “Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers”, Energy Environ. Sci. 8, 1544 (2015).
[22] K. Hwang, Y. -S. Jung, Y. -J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D. -Y. Kim, D. Vak, “Toward large scale roll-to-roll production of fully printed perovskite solar cells”, Adv. Mater. 27, 1241 (2015).
[23] C. -C. Chueh, C. -Y. Liao, F. Zuo, S. T. Williams, P. -W. Lianga, A. K. -Y. Jen, “The roles of alkyl halide additives in enhancing perovskite solar cell performance”, J. Mater. Chem. A 3, 9058 (2015).
[24] P. -W. Liang, C. -Y. Liao, C. -C. Chueh, F. Zuo, S. T. Williams, X. -K. Xin, J. Lin, A. K. -Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells”, Adv. Mater. 26, 3748 (2014).
[25] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci. 7, 982 (2014).
[26] F. Wang, H. Yu, H. Xu, N. Zhao, “HPbI3: A new precursor compound for highly efficient solution-processed perovskite solar cells”, Adv. Funct. Mater. 7, 1120 (2015).
[27] J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. -W. Lee, S. H. Im, “Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate”, Adv. Mater. 27, 3424 (2015).
[28] H. -B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells”, Nanoscale 6, 6679 (2014).
[29] Y. -J. Jeon, S. Lee, R. Kang, J. -E. Kim, J. -S. Yeo, S. -H. Lee, S. -S. Kim, J. -M. Yun, D. -Y. Kim, “Planar heterojunction perovskite solar cells with superior reproducibility”, Sci. Rep. 4, 6953 (2014).
[30] C. -Y. Chang, C. -Y. Chu, Y. -C. Huang, C. -W. Huang, S. -Y. Chang, C. -A. Chen, C. -Y. Chao, W. -F. Su, “Tuning perovskite morphology by polymer additive for high efficiency solar cell”, ACS Appl. Mater. Interfaces 7, 4955 (2015).
[31] W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells”, Nat. Commun. 6, 6124 (2015).
[32] D. T. Moore, H. Sai, K. W. Tan, L. A. Estroff, U. Wiesner, “Impact of the organic halide salt on final perovskite composition for photovoltaic applications”, APL Mater. 2, 081802 (2014)
[33] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science 338, 643 (2012).
[34] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3”, Science 342, 344 (2013).
[35] L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, “Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer”, J. Am. Chem. Soc. 7, 2674 (2015).
[36] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, S. Hayase, “All-solid perovskite solar cells with HOCO-R-NH3+I– anchor-group inserted between porous titania and perovskite”, J. Phys. Chem. C 118, 16651 (2014).
[37] W. Nie, H. Tsai, R. Asadpour, J. -C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. -L. Wang, A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science 347, 522 (2015).
[38] J. Burschka, N. Pellet, S. -J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 499, 316 (2013).
[39] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gaobc, J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci. 7, 2619 (2014).
[40] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapor deposition”, Nature 501, 395 (2013)
[41] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. -P. C. Baena, J. -D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites”, Science Advances 2, e1501170 (2016).
[42] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. -S. Duan, H. -H. Wang, Y. Liu, G. Li, Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, J. Am. Chem. Soc. 136, 622 (2014).
[43] Q. Chen, H. Zhou, T. -B. Song, S. Luo, Z. Hong, H. -S. Duan, L. Dou, Y. Liu, Y. Yang, “Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells”, Nano Lett. 14, 4158 (2014).
[44] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864 (2005).
[45] G. Li, R. Zhu, Y. Yang, “Polymer solar cells”, Nat. Photonics 6, 153 (2012).
[46] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement”, Adv. Mater. 26, 6503 (2014).
[47] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, G. Cui, “Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells”, Angew. Chem. Int. Ed. 54, 9705 (2015).
[48] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite-Based Light-Emitting Diodes”, Adv. Mater. 28, 8687 (2016).
[49] H. Cho, S. -H. Jeong, M. -H. Park, Y. -H. Kim, C. Wolf, C. -L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. -W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science 350, 1222 (2015).
[50] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Adv. Mater. 28, 8687 (2016).
[51] W. -C. Lai, K. -W. Lin, T. -F. Guo, J. Lee, “Perovskite-based solar cells with nickel-oxidized nickel oxide hole transfer layer”, IEEE Trans. Electron Devices 62, 1590 (2015).
[52] W. -C. Lai, K. -W. Lin, Y. -T. Wang, T. -Y. Chiang, P. Chen, T. -F. Guo, “Oxidized Ni/Au transparent electrode in efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells”, Adv. Mater. 28, 3290 (2016).
[53] X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, J. Shao, “Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts”, ACS Nano. 10, 3630(2016).
[54] M. -A. Peck, M. -A. Langell, “Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS”, Chem. Mater. 24, 4483-4490 (2012).
校內:2023-10-10公開