| 研究生: |
黃竹隱 Huang, Zhu-Yin |
|---|---|
| 論文名稱: |
史特靈冷凍機之設計與理論分析 Design and Theoretical Analysis of a Stirling Cooler |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 史特靈冷凍機 、菱形驅動機構 、熱力學分析 、設計 |
| 外文關鍵詞: | Stirling cooler, Rhombic drive, Thermodynamic analysis, Design |
| 相關次數: | 點閱:62 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討史特靈冷凍機的運作原理,並設計製作原型機。首先建立熱力學模型,以預測β型菱形驅動機構史特靈冷凍機之製冷頭溫度與性能係數。理論模式將冷凍機分為四個主要工作區間,為製冷頭、膨脹室、再生室以及壓縮室,分別計算壓力、溫度、質量、密度與其他熱力性質,並考慮再生損失、穿梭損失、熱傳導損失、泵氣損失與流阻損失,以計算由不可逆性所造成的冷凍負載損失,最後再得出冷凍機之降溫曲線、製冷頭溫度、冷凍負載與性能係數。
本研究針對設計參數與操作參數進行參數分析,找出影響冷凍機的主要參數,並作為設計的基礎與修改的方向,成功製造出原型機,該冷凍機在馬達轉速維持1000 rpm、填充壓力3 atm、環境溫度維持298 K、工作流體為氦氣時,可達成90 K之製冷溫度。
In this study, a thermodynamics model of a beta-type Stirling cooler with rhombic drive mechanism has been developed. The model is employed to predict the transient behavior of the Stirling cooler. By taking irreversible effects into account, the energy equations for expansion space, compression space, and regenerative channel can be solved to obtain temperature variation of cold head and performance of the cooler. A parametric study of the effects of different operating and geometrical parameters has been performed, including charged system pressure, operating speed, porosity of regenerator, thickness of cylinder wall, compression ratio and dead volume ratio. Based on these results obtained in the parametric study, a prototype Stirling cooler is successfully designed and built. The Stirling cooler using beta-type configuration is driven by a DC motor. It is found that the cooler is able to reach 90 K in minimum at 1000 rpm operating speed, 3 atm charged pressure, and 300 K ambient temperature, as helium is used as the working gas.
[1] G. Walker, Cryocooler Part 1, Fundamentals Plenum, New York and London, pp. 131-152, 1983.
[2] K.D. Timmerhaus, and R. P. Reed, Cryogenic engineering: Fifty years of progress, Springer, New York, 2007.
[3] G. Davey, and A.D. Oriowska, “Miniature Stirling cycle cooler,” Cryogenics, Vol.27, pp. 145-151, 1987.
[4] N.W. Lane, “Commercialization status of free-piston Stirling Machines,” 12th International Stirling Engine Conference, Durham, UK, 2005.
[5] G.T. Harhius, “The MC8-a magnetically driven Stirling refrigerator,” Proceeding of the 7th International Cryogenic Engineering Conference, London, Business Press, 1978.
[6] D.M. Berchowitz, “Maximized performance of Stirling cycle refrigerators,” IIF-IIR natural working fluids, Oslo, Norway, 1998.
[7] B.R. Mennink, W.J. Goossen, “The free piston Stirling cooler system, 19th International Congress on Refrigeration Exhibition, Netherlands,” 1995.
[8] C.F. Song, Y.Kitamura. Design of a cryogenic CO2 capture system based on Stirling coolers. International Journal of Gas Control, Vol.7, pp.107-114, 2012.
[9] J.R. Senft, G. Walker, Free piston Stirling engines, Springer Verlag, 1985.
[10] C.H. Cheng, Y.J. Yu, “Numerical Model for Predicting Thermodynamic Cycle and Thermal Efficiency of a Beta-type Stirling Engine with Rhombic-drive Mechanism,” Renewable Energy, Vol.35, pp. 2590-2601, 2010.
[11] R.S. Wakeland, R.M. Keolian, “Measurements of resistance of individual square-mesh screens to oscillating flow at low and intermediate Reynolds numbers,” Journal of fluids engineering, Vol.125, pp. 851-862 ,2003.
[12] N. Kwanwoo, J. Sangknow, “Novel flow analysis of a regenerator under oscillating flow with pulsating pressure,” Cryogenics, Vol.45, pp.368-379, 2005.
[13] S. Choi, K. Nam, S. Jeong, “Investigation on the pressure drop characteristics of cryocooler regenerators under oscillating flow and pulsating pressure condition,” Cryogenics, Vol.44, pp.203-210, 2004.
[14] K. Nam, S. Jeong, “Measurement of cryogenic regenerator characteristics under oscillating flow and pulsating pressure,” Cryogenics, Vol.43, pp.575-581, 2003.
[15] A.J. Organ, The regenerator and the Stirling engine, Mechanical Engineering Press, UK, 1997.
[16] R.F. Barrow, Cryogenic Systems, 2nd Edition, New York, Oxford University Press, 1973.
[17] W.M. Kays, A.L. London, Compact heat exchangers, McGraw-Hill Press, 1964.
[18] R.A. Ackermann, Cryogenic regenerative heat exchangers, New York, Plenum Press, 1997.
[19] B. Leo, Vuilleumier cycle cryogenic refrigeration system, Technology Report, AFFDL-TR-71-85, 1971.
[20] F.J. Zimmerman, R.C. Longsworth, “Shuttle heat transfer,” Advances in Cryogenic Engineering, New York, Plenum Press, 1971.
[21] S. Shtrikman, Linear motion device, United States Patent, 4346318, 1982.
[22] S.J. Park, Y.J. Hong, H.B. Kim, D.Y. Koh, J.H. Kim, B.K. Yu, K.B. Lee, “The effect of operating parameters in the Stirling cryocooler,” Cryogenics, Vol.42, pp.419-425, 2002.
[23] J.B. Zhu, Y.P. Pan, “Advances in spaceborne Stirling refrigeration technology,” Vacuum and Cryogenics, Vol.11, pp.131-149, 2005.