簡易檢索 / 詳目顯示

研究生: 蘇郁淳
Su, Yu-Chun
論文名稱: 被動式策略節能減碳效果與都市形態影響評估
Evaluation of Energy Saving and Carbon Reduction through Passive Strategies and the Impact of Urban Form
指導教授: 張學聖
Chang, Hsueh-Sheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 97
中文關鍵詞: 被動式策略都市熱島效應建築能源效率氣候變遷減緩
外文關鍵詞: Passive design, Urban heat island effect, Building energy efficiency, Climate change mitigation
相關次數: 點閱:34下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應氣候變遷,極端事件頻傳,各領域探討減碳方法並期望能於2050年達到淨零碳排,臺灣於2022年頒布淨零碳排路徑與12項戰略,包含產業轉型、能源轉型、科技研發、法治基礎、以及與都市居民最相關的淨零生活等。全球暖化使熱島效應加劇,將導致人民對於製冷空調之能源需求提升。雖然淨零路徑中包含主動式與被動式建築設計來提高能源效率的方式,但卻忽略外部都市環境的協同效應。透過都市中提高反照率、植樹、水域面積、都市型態設計等方式,可以補充現有策略,提供減緩都市熱島和降低建築能耗的額外途徑。
    高反照率表面有節能減碳與降溫的潛力,但其效果受到當地地理環境、氣候特徵、都市型態影響。因此本研究以臺南市東區99個全為住宅區之一級發布區為研究地區,透過高反照率策略與建築隔熱的節能減碳效果比較,理解高反照率策略節能效果,使用都市微氣候模型分析高反照率策略對環境氣溫影響,最後以皮爾森相關性分析對環境負面影響較小的都市型態,釐清高反照率策略與都市型態對環境氣溫影響,以供後續政策參考。
    模擬結果顯示,高反照率表面的最佳節能效果僅占隔熱策略的50%,而兩者結合能提升節能效果至隔熱的150%。高反照率策略對於環境氣溫影響於日間平均氣溫上升0.001到0.168℃,夜間降溫0.001到0.113℃,整體呈些微升溫趨勢。建築密度及立面與場地比率為影響高反照率策略效果的都市型態指標,當兩指標的值越小,高反照表面情境下日間升溫效果越小,夜間降溫效果越好。
    高反照率表面有節能減碳潛力,但於部分地區可能導致氣溫上升,而都市型態為影響高反照率策略有效性的關鍵因素之一。綜上所述,都市節能策略應更全面性,須考量都市外部環境以達最佳的節能減碳效果。

    Climate change and its intensifying impacts, such as the urban heat island effect, necessitate urgent strategies to mitigate carbon emissions and reduce energy consumption. Taiwan's net-zero emission pathway released in 2022, outlines a comprehensive approach emphasizing industrial transformation, energy transition, technological advancement, and lifestyle changes. While the plan underscores the importance of passive building design for energy efficiency, it overlooks synergistic strategies to address the external urban environment.
    However, incorporating methods like increasing albedo, expanding green spaces, and optimizing urban layout can potentially complement the existing plan, offering additional avenues to mitigate urban heat and reduce energy consumption.
    Simulation results indicate that the optimal energy-saving effect of high-albedo surfaces is only 50% of that of insulation strategies, while combining both increases savings by 50% over insulation alone. The high-albedo strategy resulted in an average daily temperature increase of 0.001 to 0.168°C and a nighttime temperature decrease of 0.001 to 0.113°C, resulting in a slight overall warming trend. Urban form indicators such as building density and facade-to-site ratio significantly influenced the effectiveness of high-albedo strategies. Lower values of these indicators led to smaller daytime temperature increases and greater nighttime temperature decreases under high-albedo conditions.
    High-albedo surfaces can reduce energy use and carbon emissions, but may increase local temperatures. Urban form significantly impacts high-albedo effectiveness. Thus, comprehensive urban energy strategies considering the broader environment are needed to optimize benefits.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究內容與流程 4 第四節 名詞定義 6 第二章 文獻回顧 7 第一節 都市熱島效應與減緩因子 7 第二節 被動式建築設計原理與應用 10 第三節 高反照率策略與都市型態之影響 12 第四節 都市建築能耗評估方式 18 第三章 研究設計 27 第一節 研究架構與內容 27 第二節 模型資料建置 42 第三節 驗證方法 48 第四章 驗證分析 49 第一節 研究地區 49 第二節 不同被動式建築設計節能減碳效果比較 50 第三節 高反照率策略對環境氣溫之影響 55 第四節 都市型態對環境氣溫之影響 61 第五章 結論與建議 67 第一節 結論 67 第二節 建議 68 參考文獻 70

    Adilkhanova, I., Santamouris, M., & Yun, G. Y. (2023). Coupling urban climate modeling and city-scale building energy simulations with the statistical analysis: Climate and energy implications of high albedo materials in Seoul. Energy and Buildings, 290, 113092. https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113092
    Ahmad, F. F., Rejeb, O., Boudekji, G., & Ghenai, C.(2024). Green hydrogen production using bifacial solar photovoltaics integrated with high-albedo roof coating & micro-inverter。International Journal of Hydrogen Energy, 56, 642-650. doi: https://doi.org/10.1016/j.ijhydene.2023.12.261
    Akbari, H., & Kolokotsa, D. (2016). Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 133, 834-842. https://doi.org/10.1016/j.enbuild.2016.09.067
    Akbari, H., Menon, S., & Rosenfeld, A. (2009). Global cooling: increasing world-wide urban albedos to offset CO<sub>2</sub>. CLIMATIC CHANGE, 94(3-4), 275-286. https://doi.org/10.1007/s10584-008-9515-9
    Alchapar, N. L., & Correa, E. N. (2016). The use of reflective materials as a strategy for urban cooling in an arid “OASIS” city. Sustainable Cities and Society, 27, 1-14. doi: https://doi.org/10.1016/j.scs.2016.08.015
    Alchapar, N. L., Pezzuto, C. C., Correa, E. N., & Salvati, A. (2019). Thermal Performance of the Urban Weather Generator Model as a Too for Planning Sustainable Urban Development. Geographica Pannonica, 23(4), 374-384. https://doi.org/10.5937/gp23-24254
    Ali, U., Shamsi, M. H., Hoare, C., Mangina, E., & O’Donnell, J. (2021). Review of urban building energy modeling (UBEM) approaches, methods and tools using qualitative and quantitative analysis. Energy and Buildings, 246, 111073. doi: https://doi.org/10.1016/j.enbuild.2021.111073
    AzariJafari, H., Xu, X., Gregory, J., & Kirchain, R. (2021). Urban-Scale Evaluation of Cool Pavement Impacts on the Urban Heat Island Effect and Climate Change. Environmental Science & Technology, 55(17), 11501-11510. https://doi.org/10.1021/acs.est.1c00664
    Azkorra-Larrinaga, Z., Romero-Antón, N., Martin-Escudero, K., & Lopez-Ruiz, G. (2023). Environmentally Sustainable Green Roof Design for Energy Demand Reduction. Buildings, 13(7). doi:10.3390/buildings13071846
    Baniassadi, A., Sailor, D. J., Crank, P. J., & Ban-Weiss, G. A. (2018). Direct and indirect effects of high-albedo roofs on energy consumption and thermal comfort of residential buildings. Energy and Buildings, 178, 71-83. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.08.048
    Battini, F., Pernigotto, G., & Gasparella, A. (2023). A shoeboxing algorithm for urban building energy modeling: Validation for stand-alone buildings. Sustainable Cities and Society, 89. doi: 10.1016/j.scs.2022.104305
    Berardi, U. (2016). The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy and Buildings, 121, 217-229. doi: 10.1016/j.enbuild.2016.03.021
    Bright, R. M., & Lund, M. T. (2021). CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review. Atmos. Chem. Phys., 21(12), 9887-9907. https://doi.org/10.5194/acp-21-9887-2021
    Buckley, N., Mills, G., Letellier-Duchesne, S., & Benis, K. (2021). Designing an Energy-Resilient Neighbourhood Using an Urban Building Energy Model. Energies, 14(15).
    Buckley, N., Mills, G., Reinhart, C., & Berzolla, Z. M. (2021). Using urban building energy modelling (UBEM) to support the new European Union’s Green Deal: Case study of Dublin Ireland. Energy and Buildings, 247, 111115. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111115
    Bueno, B., Nakano, A., Norford, L., & Reinhart, C. (2015). Urban Weather Generator - a Novel Workflow for Integrating Urban Heat Island Effect within Urban Design Process.
    Bueno, B., Norford, L., Hidalgo, J., & Pigeon, G. (2013). The urban weather generator. JOURNAL OF BUILDING PERFORMANCE SIMULATION, 6(4), 269-281. https://doi.org/10.1080/19401493.2012.718797
    Bueno, B., Roth, M., Norford, L., & Li, R. (2014). Computationally efficient prediction of canopy level urban air temperature at the neighbourhood scale. Urban Climate, 9, 35-53. https://doi.org/https://doi.org/10.1016/j.uclim.2014.05.005
    Cai, Z., Demuzere, M., Tang, Y., & Wan, Y. (2022). The characteristic and transformation of 3D urban morphology in three Chinese mega-cities. Cities, 131, 103988. https://doi.org/https://doi.org/10.1016/j.cities.2022.103988
    Chen, G., Wang, D., Wang, Q., Li, Y., Wang, X., Hang, J., Gao, P., Ou, C., & Wang, K. (2020). Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage. Science of The Total Environment, 726, 138147. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138147
    Chan, Y. H., Zhang, Y., Tennakoon, T., Fu, S. C., Chan, K. C., & Tso, C. Y. (2022). Potential passive cooling methods based on radiation controls in buildings. Energy Conversion and Management, 272, 116342. doi: https://doi.org/10.1016/j.enconman.2022.116342
    Chen, Y., Tong, Z., & Malkawi, A. (2017). Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386-396. doi: https://doi.org/10.1016/j.buildenv.2017.06.026
    Chen, H., Ooka, R., Huang, H., & Tsuchiya, T. (2009). Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation. Building and Environment, 44(11), 2290-2299. https://doi.org/https://doi.org/10.1016/j.buildenv.2009.03.012
    Chiara, D., & Rafael, M.-G. (nd, 2023/7/12). Space Cooling. IEA. Retrieved 8 from https://www.iea.org/energy-system/buildings/space-cooling#tracking
    Davila, C. C., Reinhart, C. F., & Bemis, J. L. (2016). Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets. Energy, 117, 237-250. doi: 10.1016/j.energy.2016.10.057
    Dogan, T., & Reinhart, C. (2013). Automated conversion of architectural massing models into Thermal ‘Shoebox’ models. https://doi.org/10.13140/RG.2.1.3543.0886
    Elnabawi, M. H., Hamza, N., & Raveendran, R. (2023). ‘Super cool roofs’: Mitigating the UHI effect and enhancing urban thermal comfort with high albedo-coated roofs. Results in Engineering, 19, 101269. https://doi.org/https://doi.org/10.1016/j.rineng.2023.101269
    EnergyPlus. (n.d.). Weather Data for Simulation. Retrieved 2023, December 3, from https://energyplus.net/weather/simulation
    Fang, Z., Li, N., Li, B., Luo, G., & Huang, Y. (2014). The effect of building envelope insulation on cooling energy consumption in summer. Energy and Buildings, 77, 197-205. doi: https://doi.org/10.1016/j.enbuild.2014.03.030
    Ferrando, M., Causone, F., Hong, T., & Chen, Y. X. (2020). Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches. Sustainable Cities and Society, 62, Article 102408. https://doi.org/10.1016/j.scs.2020.102408
    Ghenai, C., Rejeb, O., Sinclair, T., Almarzouqi, N., Alhanaee, N., & Rossi, F. (2023). Evaluation and thermal performance of cool pavement under desert weather conditions: Surface albedo enhancement and carbon emissions offset. Case Studies in Construction Materials, 18, e01940. https://doi.org/https://doi.org/10.1016/j.cscm.2023.e01940
    Gilbert, H. E., Rosado, P. J., Ban-Weiss, G., Harvey, J. T., Li, H., Mandel, B. H., Millstein, D., Mohegh, A., Saboori, A., & Levinson, R. M. (2017). Energy and environmental consequences of a cool pavement campaign. Energy and Buildings, 157, 53-77. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.03.051
    Hamdi, H., Roupioz, L., Corpetti, T., & Briottet, X. (2024). Evaluation of the Urban Weather Generator on the City of Toulouse (France). Applied Sciences, 14(1).
    Hao, S., & Hong, T. (2021). The Application of Urban Building Energy Modeling in Urban Planning. In M. B. Andreucci, A. Marvuglia, M. Baltov, & P. Hansen (Eds.), Rethinking Sustainability Towards a Regenerative Economy (pp. 45-63). Springer International Publishing. https://doi.org/10.1007/978-3-030-71819-0_3
    Heshmat Mohajer, H. R., Ding, L., & Santamouris, M. (2022) Developing Heat Mitigation Strategies in the Urban Environment of Sydney, Australia. Buildings, 12(7). doi:10.3390/buildings12070903
    Hirano, Y., & Fujita, T. (2016). Simulating the CO2 reduction caused by decreasing the air conditioning load in an urban area. Energy and Buildings, 114, 87-95. doi: https://doi.org/10.1016/j.enbuild.2015.06.033
    Huang, J., Kong, F., Yin, H., Middel, A., Liu, H., & Meadows, M. E. (2023). Green roof effects on urban building surface processes and energy budgets. Energy Conversion and Management, 287, 117100. doi: https://doi.org/10.1016/j.enconman.2023.117100
    Jandaghian, Z., & Berardi, U. (2020). Analysis of the cooling effects of higher albedo surfaces during heat waves coupling the Weather Research and Forecasting model with building energy models. Energy and Buildings, 207, 109627. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.109627
    Jato-Espino, D., Manchado, C., Roldán-Valcarce, A., & Moscardó, V. (2022). ArcUHI: A GIS add-in for automated modelling of the Urban Heat Island effect through machine learning. Urban Climate, 44, 101203. doi: https://doi.org/10.1016/j.uclim.2022.101203
    Ku, C.-A., & Tsai, H.-K. (2020) Evaluating the Influence of Urban Morphology on Urban Wind Environment Based on Computational Fluid Dynamics Simulation. ISPRS International Journal of Geo-Information, 9(6). doi:10.3390/ijgi9060399
    Kyriakodis, G. E., & Santamouris, M. (2018). Using reflective pavements to mitigate urban heat island in warm climates - Results from a large scale urban mitigation project. Urban Climate, 24, 326-339. https://doi.org/https://doi.org/10.1016/j.uclim.2017.02.002
    Ladybug-tools. (n.d., updated in 2024/7/8). dragonfly-grasshopper. Retrieved April, 2, from https://github.com/ladybug-tools/dragonfly-grasshopper
    Lai, D., Liu, W., Gan, T., Liu, K., & Chen, Q. (2019). A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of The Total Environment, 661, 337-353. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.01.062
    Les, N.、Christoph, R.(n.d.). Urban Weather Generator-urban heat island effect modeling software: Model Parameter Documentation. Retrieved May, 1, from https://urbanmicroclimate.scripts.mit.edu/uwg_parameters.php
    Levinson, R., & Akbari, H. (2010). Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. Energy Efficiency, 3(1), 53-109. doi: https://doi.org/10.1007/s12053-008-9038-2
    Li, D., Bou-Zeid, E., & Oppenheimer, M. (2014). The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environmental Research Letters, 9(5), Article 055002. https://doi.org/10.1088/1748-9326/9/5/055002
    Li, Y., Yin, W., Zhong, Y., Zhu, M., Hao, X., & Li, Y. (2023) Energy Consumption of Apartment Conversion into Passive Houses in Hot-Summer and Cold-Winter Regions of China. Buildings, 13(1). doi:10.3390/buildings13010168
    Li, Y. F., O'Neill, Z., Zhang, L., Chen, J. L., Im, P., & DeGraw, J. (2021). Grey-box modeling and application for building energy simulations-A critical review. Renewable & Sustainable Energy Reviews, 146. doi: 10.1016/j.rser.2021.111174
    Lin, P. Y., Lau, S. S. Y., Qin, H., & Gou, Z. H. (2017). Effects of urban planning indicators on urban heat island: a case study of pocket parks in high-rise high-density environment. Landscape and Urban Planning, 168, 48-60. doi: 10.1016/j.landurbplan.2017.09.024
    Liu, L., Menenti, M., & Ma, Y. (2022). Evaluation of Albedo Schemes in WRF Coupled with Noah-MP on the Parlung No. 4 Glacier. Remote Sensing, 14(16).
    Liu, Y., Li, Q., Yang, L., Mu, K., Zhang, M., & Liu, J. (2020). Urban heat island effects of various urban morphologies under regional climate conditions. Science of The Total Environment, 743, 140589. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140589
    Liu, Y., Chu, C., Zhang, R., Chen, S., Xu, C., Zhao, D., Meng, C., Ju, M., & Cao, Z. (2024). Impacts of high-albedo urban surfaces on outdoor thermal environment across morphological contexts: A case of Tianjin, China. Sustainable Cities and Society, 100, 105038. https://doi.org/https://doi.org/10.1016/j.scs.2023.105038
    Ma, H., Zhou, W., Lu, X., Ding, Z., Cao, Y. (2016). Application of Low Cost Active and Passive Energy Saving Technologies in an Ultra-low Energy Consumption Building. Energy Procedia, 88, 807-813. doi: https://doi.org/10.1016/j.egypro.2016.06.132
    Mao, J., & Norford, L. (2021). Urban Weather Generator: Physics-Based Microclimate Simulation for Performance-Oriented Urban Planning. In (pp. 241-263). https://doi.org/10.1007/978-3-030-65421-4_12
    Martinez, S., Machard, A., Pellegrino, A., Touili, K., Servant, L., & Bozonnet, E. (2021). A practical approach to the evaluation of local urban overheating– A coastal city case-study. Energy and Buildings, 253, 111522. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111522
    Menon, S., Akbari, H., Mahanama, S., Sednev, I., & Levinson, R. (2010). Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets. Environmental Research Letters, 5(1), 014005. https://doi.org/10.1088/1748-9326/5/1/014005
    Mirzaee, S., Özgun, O., Ruth, M., & Binita, K. C. (2018). Neighborhood-scale sky view factor variations with building density and height: A simulation approach and case study of Boston. Urban Climate, 26, 95-108. https://doi.org/https://doi.org/10.1016/j.uclim.2018.08.012
    Mlakar, J., & Štrancar, J. (2011). Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy and Buildings, 43(6), 1443-1451. doi: https://doi.org/10.1016/j.enbuild.2011.02.008
    Mohammed, A., Khan, A., & Santamouris, M. (2021). On the mitigation potential and climatic impact of modified urban albedo on a subtropical desert city. Building and Environment, 206, 108276. doi: https://doi.org/10.1016/j.buildenv.2021.108276
    Morini, E., Touchaei, A. G., Castellani, B., Rossi, F., & Cotana, F. (2016). The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model. Sustainability, 8(10).
    Morini, E., Touchaei, A. G., Rossi, F., Cotana, F., & Akbari, H. (2018). Evaluation of albedo enhancement to mitigate impacts of urban heat island in Rome (Italy) using WRF meteorological model. Urban Climate, 24, 551-566. doi: https://doi.org/10.1016/j.uclim.2017.08.001
    Mutani, G., & Todeschi, V. (2020). Building energy modeling at neighborhood scale. Energy Efficiency, 13(7), 1353-1386. doi: 10.1007/s12053-020-09882-4
    Nakano, A. (2015) Urban Weather Generator User Interface Development: Towards A Usable Tool for Intergrating Urban Heat Island Effect within Urban Design Process。S.M. in Building Technology, Massachusetts Institute of Technology, Department of Architecture.。
    Nazarian, N., Dumas, N., Kleissl, J., & Norford, L. (2019). Effectiveness of cool walls on cooling load and urban temperature in a tropical climate. Energy and Buildings, 187, 144-162. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.01.022
    Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates. Cambridge University Press. https://doi.org/DOI: 10.1017/9781139016476
    Oliveira, J. T., Hagishima, A., Tanimoto, J. (2009). Estimation of passive cooling efficiency for environmental design in Brazil. Energy and Buildings, 41(8), 809-813. doi: https://doi.org/10.1016/j.enbuild.2009.02.006
    Peng, L. L. H., Jiang, Z. D., Yang, X. S., Wang, Q. Q., He, Y. F., Chen, S. S. (2020). Energy savings of block-scale facade greening for different urban forms. Applied Energy, 279. doi: 10.1016/j.apenergy.2020.115844
    Pisello, A. L. (2015). 9 - High-albedo roof coatings for reducing building cooling needs. In F. Pacheco-Torgal, J. A. Labrincha, L. F. Cabeza, & C. G. Granqvist (Eds.), Eco-Efficient Materials for Mitigating Building Cooling Needs (pp. 243-268). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-1-78242-380-5.00009-1
    Qin, Y. (2015). Urban canyon albedo and its implication on the use of reflective cool pavements. Energy and Buildings, 96, 86-94. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.03.005
    Quan, S. J., & Li, C. S. (2021). Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies. Renewable & Sustainable Energy Reviews, 139. doi: 10.1016/j.rser.2020.110662
    Reinhart, C., Dogan, T., Jakubiec, J., Rakha, T., & Sang, A. (2013). Umi – An Urban Simulation Environment For Building Energy Use, Daylighting And Walkability. https://doi.org/10.26868/25222708.2013.1404
    Reinhart, C. F., & Davila, C. C. (2016) Urban building energy modeling - A review of a nascent field, Building and Environment, 97, 196-202. doi:10.1016/j.buildenv.2015.12.001
    Rossi, F., Castellani, B., Pazzaglia, A., Di Giuseppe, A., Bonafoni, S., Filipponi, M., Presciutti, A., & Cotana, F. (2023). Application of the novel satellite calibrated method “Radiative Forcing Meter” on a high albedo test facility for CO2 compensation. Solar Energy, 263, 111934. https://doi.org/https://doi.org/10.1016/j.solener.2023.111934
    Ryu, Y.-H., & Baik, J.-J. (2012). Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity. Journal of Applied Meteorology and Climatology, 51(5), 842-854. https://doi.org/https://doi.org/10.1175/JAMC-D-11-098.1
    Salvati, A., Monti, P., Coch Roura, H., & Cecere, C. (2019). Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy and Buildings, 185, 162-179. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.12.024
    Salvati, A., Kolokotroni, M., Kotopouleas, A., Watkins, R., Giridharan, R.、& Nikolopoulou, M. (2022). Impact of reflective materials on urban canyon albedo, outdoor and indoor microclimates. Building and Environment, 207, 108459. doi: https://doi.org/10.1016/j.buildenv.2021.108459
    Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224-240. https://doi.org/https://doi.org/10.1016/j.rser.2013.05.047
    Santamouris, M. (2014). On the energy impact of urban heat island and global warming on buildings. Energy and Buildings, 8, 100-113. doi: 10.1016/j.enbuild.2014.07.022
    Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings-A review. Energy and Buildings, 98, 119-124. doi: 10.1016/j.enbuild.2014.09.052
    Santamouris, M., Ding, L., Fiorito, F., Oldfield, P., Osmond, P., & Paolini, R. (2017). Passive and active cooling for the outdoor built environment - Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy, 154, 14-33. doi: 10.1016/j.solener.2016.12.006
    Santamouris, M., Gaitani, N., Spanou, A., Saliari, M., Giannopoulou, K., Vasilakopoulou, K., & Kardomateas, T. (2012). Using cool paving materials to improve microclimate of urban areas – Design realization and results of the flisvos project. Building and Environment, 53, 128-136. https://doi.org/https://doi.org/10.1016/j.buildenv.2012.01.022
    Schnieders, J., Feist, W., & Rongen, L. (2015). Passive Houses for different climate zones. Energy and Buildings, 105, 71-87. doi: https://doi.org/10.1016/j.enbuild.2015.07.032
    Sun, X. N., Gou, Z. H., & Lau, S. S. Y. (2018). Cost-effectiveness of active and passive design strategies for existing building retrofits in tropical climate: Case study of a zero energy building. JOURNAL OF CLEANER PRODUCTION, 183, 35-45. doi: 10.1016/j.jclepro.2018.02.137
    Susca, T. (2019). Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, 162. doi: 10.1016/j.buildenv.2019.106273
    Susca, T., Zanghirella, F., Colasuonno, L., Del Fatto, V. (2022). Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review. Renewable & Sustainable Energy Reviews, 159. doi: 10.1016/j.rser.2022.112100
    SUSTAINABLE DESIGN LAB. (n.d.). UBEM.IO. Retrieved 2024, March 3, from https://www.ubem.io/
    Synnefa, A., Santamouris, M., & Akbari, H. (2007). Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy and Buildings, 39(11), 1167-1174. https://doi.org/https://doi.org/10.1016/j.enbuild.2007.01.004
    Taha, H. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25(2), 99-103. https://doi.org/https://doi.org/10.1016/S0378-7788(96)00999-1
    Taleghani, M. (2018a). Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 81, 2011-2018. doi: https://doi.org/10.1016/j.rser.2017.06.010
    Taleghani, M. (2018b). The impact of increasing urban surface albedo on outdoor summer thermal comfort within a university campus. Urban Climate, 24, 175-184. doi: https://doi.org/10.1016/j.uclim.2018.03.001
    U.S. Environmental Protection Agency. 2008. Reducing urban heat islands: Compendium of strategies. Draft. from: https://www.epa.gov/heat-islands/heat-island-compendium.
    Wang, Y., & Akbari, H. (2014). Effect of Sky View Factor on Outdoor Temperature and Comfort in Montreal. Environmental Engineering Science, 31(6), 272-287. https://doi.org/10.1089/ees.2013.0430
    Wang, Y., Berardi, U., & Akbari, H. (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114, 2-19. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.06.046
    Weather Meteorological Organization (WMO). (n.d., updated in 2023/12/8). Climate.onebuilding.org. Retrieved 2024 July 3, from https://climate.onebuilding.org/
    Wong, C. H. H., Cai, M., Ren, C., Huang, Y., Liao, C. P., Yin, S. (2021). Modelling building energy use at urban scale: A review on their account for the urban environmen. Building and Environment, 205. doi: 10.1016/j.buildenv.2021.108235
    Xu, X., AzariJafari, H., Gregory, J., Norford, L., & Kirchain, R. (2020). An integrated model for quantifying the impacts of pavement albedo and urban morphology on building energy demand. Energy and Buildings, 211, 109759. https://doi.org/https://doi.org/10.1016/j.enbuild.2020.109759
    Xu, Y., Ren, C., Ma, P. F., Ho, J., Wang, W. W., Lau, K. K. L., Lin, H., & Ng, E. (2017). Urban morphology detection and computation for urban climate research. Landscape and Urban Planning, 167, 212-224. https://doi.org/10.1016/j.landurbplan.2017.06.018
    Xu, H., Chen, H., Zhou, X., Wu, Y., & Liu, Y. (2020) Research on the relationship between urban morphology and air temperature based on mobile measurement: A case study in Wuhan, China. Urban Climate, 34, 100671. doi: https://doi.org/10.1016/j.uclim.2020.100671
    Yaghoobian, N., & Kleissl, J. (2012). Effect of reflective pavements on building energy use. Urban Climate, 2, 25-42. https://doi.org/https://doi.org/10.1016/j.uclim.2012.09.002
    Yang, J. C., Wang, Z. H., & Kaloush, K. E. (2015). Environmental impacts of reflective materials: Is high albedo a 'silver bullet' for mitigating urban heat island? Renewable & Sustainable Energy Reviews, 47, 830-843 doi: https://doi.org/10.1016/j.rser.2015.03.092
    Yang, X., & Li, Y. (2015). The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Building and Environment, 90, 146-156. https://doi.org/https://doi.org/10.1016/j.buildenv.2015.03.037
    Zhang, J., Mohegh, A., Li, Y., Levinson, R., Ban-Weiss, G. (2018). Systematic Comparison of the Influence of Cool Wall versus Cool Roof Adoption on Urban Climate in the Los Angeles Basin. Environmental Science & Technology, 52(19), 11188-11197. doi: 10.1021/acs.est.8b00732
    王仁俊 (2005)。 住宅街廓用電之研究。﹝博士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    王仁俊、林憲德、劉心蘭、陳建富、邱清泉 (2004)。 台南市住宅區透天商店用電解析[Electricity Analysis of Low-rise Commercial Buildings in Tainan City's Residential Blocks]。建築學報(48),頁 27-40。 doi: 10.6377/JA.200409.0027
    王榮進、朱佳人、郭建源、張淇喻、林元智、林禹安、楊凱傑、江彥葶 (2020)。 建築物自然通風量計算評估手冊之研擬(期末報告)。內政部建築研究所協同研究報告。
    甘知潔 (2009)。 都市街廓用電預測方法之研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    何明錦、林憲德、姚志廷、蘇梓靖、陳雍雍、李東翰 (2011)。 永續綠建築與節能減碳科技計畫第 2 案-隔熱材料對建築外殼隔熱性能及節能效益影響之研究。內政部建築研究所協同研究報告。
    李浩銓、林素琴、杜威達 (2013)。 我國住宅部門能源耗用調查與應用分析[Residential Energy Consumption Survey and Application Analysis in Taiwan]。冷凍空調與能源科技雜誌(82),頁 30-36。
    李榮泰 (2001)。 住宅用電量簡易評估法之研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    沈如龍 (2003)。 都市住宅區街廓用電調查研究-以台南市為例。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    林子平(2021)。都市的夏天為什麼愈來愈熱?。臺灣:商周出版。
    林子平、黃瑞隆、施文玟 (2014)。 建築外牆隔熱及蓄熱效果對室內環境溫度影響之探討。內政部建築研究所委託研究報告。
    林奉怡(2019)。 建構都市規模下的微氣候、住宅能源需求及熱風險空間分佈地圖的開發研究。國立成功大學建築學系,台南市。
    林憲德(2015)。 建築碳足跡(二版)。詹氏書局。
    林憲德、王仁俊、劉心蘭、陳建富、邱清泉 (2004)。 台南市住宅區透天商店用電解析[Electricity Analysis of Low-rise Commercial Buildings in Tainan City's Residential Blocks]。建築學報(48),頁 27-40。 doi: 10.6377/JA.200409.0027
    林憲德 (2023)。 台灣建築外殼節能法規的成本最佳化策略[Cost‐optimal Strategy for Energy Conservation Design Code of Building Envelop in Taiwan]。建築學報(125_S),頁 115-128。 doi: 10.53106/101632122023120125013
    姚志廷 (2021)。 建築物屋頂隔熱節能策略探討之研究。內政部建築研究所自行研究報告。
    柯尚彬、朱耀明 (2009)。 適用於台灣的節能熱水器。生活科技教育, 42(8),頁 77-86。 doi: 10.6232/LTE.2009.42(8).6
    高暉舜 (2018)。 建築外牆隔熱塗料能源效率評估。﹝碩士論文。朝陽科技大學﹞臺灣博碩士論文知識加值系統。
    張又升 (2021)。 台灣建築物性能模擬用典型氣象年之研究[The Study on Typical Meterological Year for Building Performance Simulation in Taiwan]。建築學報(115),頁 21-39。 doi: 10.3966/101632122021030115002
    郭柏巖 (2005)。 住宅耗電實測解析與評估系統之研究。﹝博士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    陳介慧 (2009)。 建築用電密度標準之研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    陳宜群 (2006)。 都市商業區街廓用電調查研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    陳緯哲(2020)。都市地表型態對行人尺度風場與熱環境之探討:以臺南市區為例。國立臺灣大學。
    陳麒任 (2017)。 推動既有建築節能改善策略與效益之研究。內政部建築研究所自行研究報告。
    黃國倉 (2002)。 空調設備量簡易預測法之研究---由ENVLOAD推估冷凍主機容量---。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    葉惟中 (2021)。 村里等級建築能源耗用評估及全台能耗地圖之建立。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    劉心蘭 (2005)。 公寓大廈住宅用電調查研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    歐佩瑛、周煥銘 (2019)。 淺談被動式節能與主動式節能策略在綠建築設計上之運用[A Brief Discussion about the Applications of Passive and Active Energy-Saving Strategies on Green Architecture and Design]。文化創意產業研究學報, 9(1),頁 23-33。 doi: 10.6639/JCCIR.201903_9(1).0003
    黎錦輝、文一智 (2020)。我國亞熱帶地區被動式建築設計之策略初探。2020 中華民國營建工程學會第十八屆營建產業永續發展研討會。
    賴嵐瑄 (2007)。 都市商業區建築與街廓用電預測之研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    蘇梓靖 (2014)。 建築動態耗能密度指標之研究。﹝博士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    顧孝偉 (2003)。 住宅用電量監測與解析之研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。
    財團法人台灣建築中心(無日期)。高性能節能綠建材,財團法人台灣建築中心網站。取自: https://gbm.tabc.org.tw/modules/pages/glass,最後瀏覽時間:2024/5/20。
    內政部國土測繪中心(2022)。多維度國家空間資訊服務平臺。取自:https://3dmaps.nlsc.gov.tw/
    經濟部能源署(2023)111年度我國各部門燃料燃燒之二氧化碳排放統計與分析。
    經濟部能源署(2023)112年度電力排碳係數。

    下載圖示 校內:2025-09-06公開
    校外:2025-09-06公開
    QR CODE