簡易檢索 / 詳目顯示

研究生: 楊振維
Yang, Chen-Wei
論文名稱: 藉由資訊萃取技術建構的一個自動化醫療品質評估系統
ESQC - AN AUTOMATIC EVALUATION SYSTEM FOR QUALITY OF CARE ASSESSMENT WITH INFORMATION EXTRACTION TECHNOLOGY
指導教授: 蔣榮先
Chiang, Jung-Hsien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 58
中文關鍵詞: 醫療品質急性心肌梗塞資訊萃取
外文關鍵詞: AMI, information extraction, quality of care
相關次數: 點閱:122下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著醫學資訊的進展,以及電子病歷的普及,如何準確且快速地評估醫療品質,是醫學界一項重要的課題。本研究欲藉由整合NLP 以及文件探勘等技術,建立一個自動化的醫療品質評估系統,透過探勘醫療品質的過程面以及結果面,作進一步地評估。本研究將急性心肌梗塞作為指標性疾病。研究資料為台大醫院的急性心肌梗塞病患的電子出院病摘。將所有罹患急性心肌梗塞的病人,區分成兩大
    類別STEMI, NSTEMI 作為訓練樣本來建構系統,以及測試樣本來驗證系統。能夠獲得相當高的一致性。最後實際應用於該醫院的心臟外科部門,作為評估該部門的醫療品質。我們藉由評估醫療品質可以清楚地對該治療單位的醫療照顧,作全面性的探討。進而減少醫療失誤,以促進病人安全。

    With the progress of medical informatics and popularity of electronic patient records, how to evaluate the quality of care accurately and rapidly is an important issue in medical domain recently. In this study, we propose to integrate natural language processing and text mining techniques to develop an automatic system to assess the
    quality of care for acute myocardial infarction (AMI). We make a thorough analys is by evaluating process part and outcome part of quality of care. We collect the Electronic
    Discharge Notes (EDN) and some other related tables in NTU hospital in Taiwan as dataset. It separates the patients’ record for AMI into two classes, STEMI and NSTEMI, as training set and testing set in our system. And we get the high consistence when building and validating. Finally, we apply the system on the cardiac surgical department and assess the quality of care. We can monitor the quality of the treatment unit derived from assessing quality of care and reduce medical errors, elevate patient safety further.

    Table of Content ABSTRACT .......................................... 2 CHAPTER 1 INTRODUCTION ............................ 6

    [1] Stelfox HT, Palmisani S, Scurlock C, Orav EJ, Bates DW. The “To Err is Human”
    report and the patient safety literature. Qual Saf Health Care. 2006
    Jun;15(3):174-8.
    [2] Donabedian A. The quality of care: how can it be assessed? JAMA 1988;260:
    1743–48.
    [3] Spertus JA, Radford MJ, Every NR, et al. Challenges and opportunities in
    quantifying the quality of care for acute myocardial infarction: summary from
    the Acute Myocardial Infarction working group of the American Heart Association/
    American College of Cardiology first scientific forum on quality of care and
    outcomes research in cardiovascular disease and stroke. Circulation
    2003;107:1681- 91.
    [4] American Heart Association. Heart and Stroke Statistical Update [online article]
    http://www.americanheart.org/statistics/index.html
    [5] Antman EM, Anbe DT, Armstrong PW, Bates ER, et al. ACC/AHA Guidelines
    for the Management of Patients With ST-Elevation Myocardial Infarction. J Am
    Coll Cardiol 2004;44:671-719
    [6] Van de Werf F, Ardissino D, Betriu A, Cokkinos DV, Falk E, Fox KA, Julian D,
    Lengyel M, Neumann FJ, Ruzyllo W, Thygesen C, Underwood SR, Vahanian A, Verheugt
    FW, Wijns W; Task Force on the Management of Acute Myocardial Infarction
    of the European Society of Cardiology. Management of acute myocardial infarction
    in patients presenting with ST-segment elevation. The Task Force on the
    Management of Acute Myocardial Infarction of the European Society of Cardiology.
    Eur Heart J. 2003 Jan;24(1):28-66.
    [7] Roe MT, Parsons LS, Pollack CV Jr, et al. Quality of care by classification of
    44
    myocardial infarction. Arch Intern Med 2005;165:1630-36.
    [8] Rubenfeld, GD. Using Computerized Medical Database to Measure and to
    Improve the Quality of Intensive Care. J Crit Care. 2004 Dec;19(4):248-56.
    [9] Sheng-Nan Chang, Jou-Wei Lin, Shi-Chi Liu, Juey-Jen Hwang. Measuring the
    Process of Quality of Care for Acute Myocardial Infarction through Data-Mining
    of the Electronic Discharge Notes. J Eval Clin Pract. 2008 Feb;14(1):116-20.
    [10] Donaldson NE, Rutledge DN, Ashley J. Outcomes of adoption: measuring
    evidence uptake by individuals and organizations. Worldviews Evid Based Nurs.
    2004;1 Suppl 1:S41-52.
    [11] Aydin CE, Bolton LB, Donaldson N, Brown DS, Buffum M, Elashoff JD, Sandhu
    M. Creating and analyzing a statewide nursing quality measurement database.
    J Nurs Scholarsh. 2004;36(4):371-8
    [12] Brown DS, Donaldson N, Aydin CE, Carlson N. Hospital nursing benchmarks:
    the California Nursing Outcomes Coalition project. J Healthc Qual. 2001
    Jul-Aug;23(4):22-7.
    [13] Bolton LB, Jones D, Aydin CE, Donaldson N, Brown DS, Lowe M, McFarland
    PL, Harms D. A response to California's mandated nursing ratios. J Nurs Scholarsh.
    2001;33(2):179-84.
    [14] Every N, Fihn Stephan, Sales A, Keane A, Ritchie A. Quality Enhancement
    Research Initiative in Ischemic Heart Disease: A Quality Initiative From the Department
    of Veterans Affairs. Med Care. 2000 Jun;38(6 Suppl 1):I49-59
    [15] Marshall J, Balas EA, and Reid JC. Technique for Efficient Information Retrieval
    in Outpatient Systems. Proc AMIA Annu Fall Symp. 1997;:76-80.
    [16] Sager N, Lyman M, Bucknall C, Nhan N, Tick LJ. Natural language processing
    and the representation of clinical data. J Am Med Inform Assoc 1994;1(2):142-160.
    [17] Gundersen ML, Haug PJ, Pryor TA, van Bree R, Koehler S, Bauer K et al. De45
    velopment and evaluation of a computerized admission diagnoses encoding system.
    Compu Biomed Res 1996;29(5):351-372.
    [18] Fiszman M, Haug PJ. Using medical language processing to support real-time
    evaluation of pneumonia guidelines. Proc AMIA Symp 2000;235-239.
    [19] Zingmond D, Lenert LA. Monitoring free-text data using medical language
    processing. Comput Biomed Res 1993;26(5):467-481.
    [20] Jain NL, Knirsch CA, Friedman C, Hripcsak G. Identification of suspected tuberculosis
    patients based on natural language processing of chest radiograph
    reports. Proceedings AMIA Annual Fall Symposium:542-6, 1996.
    [21] Jain NL, Friedman C. Identification of findings suspicious for breast cancer
    based on natural languate processing of mammogram reports. Proceedings AMIA
    Annual Fall Symposium:829-33, 1997.
    [22] Friedman C. Kra P. Yu H. Krauthammer M. Rzhetsky A. GENIES: a natural-
    language processing system for the extraction of molecular pathways from
    journal articles. Bioinformatics. 17 Suppl. 1:S74-82,2001.
    [23] Mendonca EA, Haas J, Shagina L, Larson E. Friedman C. Extracting Information
    on pneumonia in infants using natural language processing of radiology reports.
    J Biomed Inform. 2005 Aug;38(4):314-21. Epub 2005 Mar 30.
    [24] Melton GB, Hripcsak G. Automated detection of adverse events using natural
    language processing of dishcarge summaries. Journal of the American Medical Information
    Association. 12(4):448-57, 2005
    [25]B.Y. Ricardo, R. N. Berthier. Modern Information Retrieval.
    [26] Fan JW, Friedman C. Semantic Classification of Biomedical Concepts Using
    Distributional Similarity. J Am Med Inform Assoc. 2007 Jul-Aug;14(4):467-77.
    Epub 2007 Apr 25
    [27] Zhou L, Parsons S, Hripcsak G. The Evaluation of a Temporal Reasoning
    46
    System in Processing Clinical Discharge Summaries. J Am Med Inform Assoc.
    2008 Jan-Feb;15(1):99-106. Epub 2007 Oct 18
    [28] Zhou L, Friedman C, Parsons S, Hripcsak G. System Architecture for Temporal
    Information Extraction, Representation and Reasoning in Clinical Narrative
    Reports. AMIA Annu Symp Proc. 2005;:869-73.

    下載圖示 校內:2011-07-08公開
    校外:2011-07-08公開
    QR CODE